61 resultados para MEDIACIÓN – APRENDIZAJE
Resumo:
En la sociedad educativa actual no se puede considerar al uso de las TIC’s como una opción más, sino como una importante necesidad para lograr un aprendizaje más propio en el estudiante, siendo este el constructor de su conocimiento. El objetivo del presente taller es el conocer al programa gratuito GeoGebra como una potente herramienta para el aprendizaje y enseñanza de la matemática. Para esto se realizarán construcciones diversas en el área de la geometría y funciones, con el fin de conocer el funcionamiento del programa para luego aterrizar en lo que respecta a elaboración de guías de trabajo para estudiantes y docentes.
Resumo:
Este reporte de investigación centra la atención al discurso del profesor en el aula de matemáticas en la Educación Media Superior, cuando se pretende enseñar conceptos y procesos matemáticos ligados a la noción de semejanza. Considerando que uno de los obstáculos en la evolución de este concepto ha sido la relación entre los aspectos figurativo y numérico. Nos preguntamos en qué medida el discurso del aula de matemáticas facilita las interpretaciones de las normas sociomatemáticas. Nuestro objetivo es presentar una aproximación a la noción del discurso en el aula para la identificación de normas sociomatemáticas que deberán regular las actuaciones y las formas de actuación que han de ser válidas para la construcción de consensos en el aula. El marco teórico en el que se sitúa la investigación es el enfoque interaccionista y análisis del discurso. Consideraremos un modelo de investigación cualitativa, basado en el método etnográfico, en donde los episodios que en este reporte se presentan forman parte del trabajo interpretativo en general.
Resumo:
Los educadores estadísticos consideran que la alfabetización estadística es un requisito indispensable para entender el entorno y la información disponible, para evaluar críticamente esa información y para tomar decisiones en situaciones de incertidumbre informadas y soportadas en argumentos. El ciclo investigativo PPDAC —Problema, Plan, Datos, Análisis y Conclusiones— es una propuesta para organizar la clase de estadística, con la que se puede promover el razonamiento estadístico y la formación de una cultura estadística. Como organizador de la clase, se constituye en un ambiente propicio para contribuir a la formación estadística, con procesos de participación que impliquen aprendizajes colaborativos. En esta conferencia se amplían y ejemplifican estos temas.
Resumo:
Consideramos en este trabajo la necesidad de observar el proceso a través del cual los estudiantes enajenan las propiedades conceptuales de la representación gráfica y sus componentes figurales. Propusimos a 149 estudiantes de bachillerato, un cuestionario en el que se solicita localizar puntos con base en propiedades relacionadas en sus ordenadas y sus abscisas; habiendo constatado que los estudiantes localizan puntos sobre el plano bajo las normas analíticas, les proponemos identificar los puntos de una gráfica que tienen mayor ordenada o abscisa que los demás. En particular, deseamos saber, cuáles consideran nuestros estudiantes que son los “puntos” sobre la gráfica, las marcas colocadas al inicio y al final de la gráfica en forma de pequeños círculos, o el rasgo determinado por su posición definida.
Resumo:
El trabajo trata de mostrar los logros en el aprendizaje de la matemática –área de Geometría– a través del contenido transversal Educación para la gestión de riesgos y la conciencia ambiental, usando recursos tecnológicos como Google Maps y Google Earth. El tema desarrollado para tal fin fue el problema sismológico en el Perú. Finalmente, se señalan temas de geometría involucrados, así como temas anexos a través del uso de contenidos de Estadística, Geografía y Ciencias Naturales. La experiencia se hizo con un grupo de 50 alumnas del Tercer año de Educación Secundaria de una escuela pública del Perú.
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.
Resumo:
La evaluación ha tomado un destacado lugar. Es una actividad prioritaria en las aulas, que causa impacto, y cuyos resultados en buena medida representan un reto para los profesores. En esta investigación pudimos constatar que al menos en lo explícito del discurso, los diseños didácticos para la enseñanza de las Matemáticas que se centran en el alumno van mejorando lentamente, pero cuando se concretan los procesos de evaluación surge una contradicción, pues el enfoque no ha sido realmente modificado, pues los aprendizajes de los estudiantes se proyectan de manera limitada pues para evaluarlos se construyen formatos tradicionales, con estructura simple que demanda respuestas directas, cortas y sin mucho trabajo de reflexión por parte del alumno. Hace falta más fundamentación en los apoyos didácticos que los profesores reciben, y el renglón de la evaluación de los aprendizajes matemáticos en el aula queda como una verdadera asignatura pendiente en la formación magisterial.
Resumo:
En este documento trataremos algunas consideraciones teóricas en que basamos un trabajo en proceso, un estudio comparativo acerca de las concepciones sobre la transformación lineal en contexto geométrico entre dos tipos de actores educativos (profesores y estudiantes de matemáticas de distintas zonas geográficas en México). Nuestra intención es discutir algunas ideas del marco teórico de la investigación, en relación a algunos modelos intuitivos relacionados con la transformación lineal en contexto geométrico, utilizando la teoría de Fischbein (1987, 1989) y el trabajo de Molina (2004).
Resumo:
El creciente uso de software de geometría dinámica 3-dimensional plantea nuevas cuestiones a los investigadores en Educación Matemática. Para aportar información sobre el aprendizaje de geometría espacial en esta disciplina mediante entornos de geometría dinámica 3-dimensional, y sobre posibles fortalezas y debilidades de tales entornos, presentamos resultados de una investigación experimental en la que se analiza cómo un estudiante de altas capacidades matemáticas aprende conceptos relativos a paralelismo entre rectas y/o planos en el espacio mediante la resolución de actividades en un entorno de Cabri 3D.
Resumo:
Esta investigación se propone responder a interrogantes iniciales que surgen en torno al planteamiento y ejecución de programas de actualización y capacitación, con la intensión de contribuir, en buena medida, a enriquecer nuestro conocimiento de lo que ocurre en el aula. En lo particular, centramos la atención en el papel de las explicaciones en la clase de matemáticas cuando se pretende introducir conceptos geométricos, específicamente la noción de semejanza en el nivel medio superior. Consideramos un modelo de investigación cualitativa, basada en el método etnográfico que toma a la observación como técnica de registro. Los participantes en la investigación son profesores en servicio del nivel medio superior.
Resumo:
En este documento se caracterizan los usos de las gráficas. Se caracteriza su uso en la enseñanza tradicional, en los medios de comunicación, para el desarrollo del pensamiento y el uso social que se les da en las comunidades de profesionales o en la vida diaria de la gente. En la enseñanza tradicional son utilizadas como auxiliares didácticos que hacen posible la visualización de datos. Hoy día las gráficas son muy usuales en los medios de comunicación como recursos para transmitir información a núcleos poblacionales amplios, sin embargo las graficas socialmente compartidas requieren de lectores con una cultura amplia que les posibilite entenderlas y darles el sentido adecuado. Las graficas no solo son necesarias transmitir información, son útiles para favorecer el desarrollo del pensamiento y lenguaje variacional. Las habilidades como: la estimación, el cálculo, la predicción, el planteo de conjeturas, para identificar lo que cambia, para correlacionar cambios, para determinar las cualidades del cambio, etc. pueden contribuir al desarrollo de este tipo de conocimiento.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
En este trabajo se muestra la implementación, los resultados y las conclusiones de una prueba piloto para evaluar el valor propedéutico del aprendizaje matemático de todo el ciclo medio, teniendo en cuenta los requerimientos del ingreso universitario.
Resumo:
Ésta investigación se sitúa en la problemática del fracaso escolar en Matemática en estudiantes de Nivel Medio (Corica, Otero, 2005; Gascón et. al., 2001). Nuestro objetivo fue estudiar las ideas de alumnos y profesores acerca del saber matemático, su enseñanza y aprendizaje, para poder explorar los posibles factores que intervienen en el fracaso en Matemática de los estudiantes. En esta investigación se abordan aspectos didácticos a partir de la Teoría Antropológica de lo Didáctico (Chevallard, 1999), aspectos cognitivos a partir de la Teoría de Aprendizaje Significativo (Ausubel, 1976) y aspectos epistemológicos vinculadas al saber matemático a partir de las ideas de Klimovsky (2000). En este trabajo se presentan resultados de dos estudios realizados con estudiantes de Nivel Medio y un tercer estudio vinculado con profesores del mismo nivel.
Resumo:
En esta comunicación presentamos la forma como resumimos todos los posibles caminos de aprendizaje considerados para el desarrollo de dos tareas. Las dos tareas pretenden contribuir al logro de un objetivo de aprendizaje: resolver problemas que implican permutaciones sin repetición. Exponemos algunas expectativas de aprendizaje planteadas en términos de capacidades y errores y organizamos esas expectativas por medio de caminos de aprendizaje. Analizamos los caminos de aprendizaje resumiendo las estrategias de solución mediante secuencias de capacidades. Finalmente, analizamos la contribución de las tareas al logro del objetivo.