38 resultados para Evolución histórica del concepto
Resumo:
Este reporte de investigación centra la atención al discurso del profesor en el aula de matemáticas en la Educación Media Superior, cuando se pretende enseñar conceptos y procesos matemáticos ligados a la noción de semejanza. Considerando que uno de los obstáculos en la evolución de este concepto ha sido la relación entre los aspectos figurativo y numérico. Nos preguntamos en qué medida el discurso del aula de matemáticas facilita las interpretaciones de las normas sociomatemáticas. Nuestro objetivo es presentar una aproximación a la noción del discurso en el aula para la identificación de normas sociomatemáticas que deberán regular las actuaciones y las formas de actuación que han de ser válidas para la construcción de consensos en el aula. El marco teórico en el que se sitúa la investigación es el enfoque interaccionista y análisis del discurso. Consideraremos un modelo de investigación cualitativa, basado en el método etnográfico, en donde los episodios que en este reporte se presentan forman parte del trabajo interpretativo en general.
Resumo:
El pasaje de la unidad al cero, parece ser un paso intelectual sencillo, sólo si no nos detenemos a pensar acerca de las dificultades que involucran su comprensión. Existe una gran complejidad en este paso, tanto desde el punto de vista histórico como conceptual. La percepción de la relación entre el vacío, la nada y la necesidad de representarla no fue históricamente inmediata ni sencilla. La invención del cero estuvo muy lejos de ser evidente. Se propone una breve recorrida por la historia del surgimiento del cero y sus funciones, para lograr hacer más comprensibles las dificultades que presenta la comprensión de este concepto.
Resumo:
En los actuales manuales de estadística se suele plantear el método de mínimos cuadrados como una importante y singular técnica relacionado con el problema del ajuste, consiste no tener la ecuación de una curva que como algo determinado criterio, se acerca acuérdate de lo mejor posible los puntos observados de una distribución bidimensional.
Resumo:
La importante revista inglesa Nature, en su Volumen 340 del mes de Julio de 1989, publica interesantes resultados referentes a una encuesta realizada simultáneamente en los Estados Unidos de Norteamérica y en Inglaterra, para averiguar el concepto que el hombre común tiene de la ciencia y de sus métodos, así como del interés por la misma y del grado de conocimientos referentes a algunas de sus realizaciones. La encuesta se hizo sobre una muestra de unos dos mil norteamericanos y otros tantos ingleses, tomados al azar entre mayores de 18 años.
Resumo:
En este artículo se analiza la posición que ocupa Laplace en el desarrollo de la teoría clásica de la probabilidad. Se hace en el marco de los 200 años de la publicación del "Essai philosophique sur les probabilités". El artículo se divide en las siguientes secciones: en la primera se introducen algunas de las características de las matemáticas del periodo. En la segunda, se presentan algunos de los desarrollos fundamentales en la teoría de la probabilidad alcanzados durante los siglos XVII y XVIII. Finalmente, presentamos algunas de las principales contribuciones de Laplace. En general, se considera que con Laplace la teoría clásica de la probabilidad adquiere su forma definitiva.
Resumo:
El cálculo vectorial apareció en el siglo XIX. Hay operaciones entre vectores tales como el producto escalar que se puede ampliar sin dificultad de espacios de dimensión dos a espacios de dimensión tres y superior. Sin embargo, la ampliación del producto vectorial de vectores de dimensión dos a vectores tridimensionales tuvo serias dificultades. El conocimiento de los pasos lógicos que tuvieron que dar Hamilton y Grassmann para sentar las bases del calculo vectorial en de gran importancia pedagógica para profundizar en el concepto de operación.
Resumo:
El pasaje de la unidad al cero, parece ser un paso intelectual sencillo, sólo si no, nos detenemos a pensar acerca de las dificultades que involucran su comprensión. Existe una gran complejidad en este paso, tanto desde el punto de vista histórico como conceptual. La percepción de la relación entre el vacío, la nada y la necesidad de representarla no fue históricamente inmediata ni sencilla. La invención del cero estuvo muy lejos de ser evidente. Se propone una breve recorrida por la historia del surgimiento del cero y sus funciones, para lograr hacer más comprensibles las dificultades que presenta la comprensión de este concepto.
Resumo:
El estudio de predicción y variación de R. Cantoral (2001), así como la evolución a través de los marcos epistémícos del movimiento de: Aristóteles, Galileo y Newton (de la predicción de un estado conociendo un estado de facto Muñoz, 2000), proporcionan la base epistemológica para una epistemología inicial de la matematización del movimiento, y la búsqueda de los mecanismos de transición del binomio de Newton a la serie de Taylor; para ello revisamos textos antiguos, artículos relacionados con la investigación y textos escolares vigentes. Lo anterior nos proporcionó referentes para analizar la construcción de significados con los estudiantes de la carrera de Ingeniería Civil, así como incorporar contextos físicos donde las estrategias vertidas por los estudiantes para resolver problemas propios de la física, son de naturaleza tal que las ideas de cambio y variación están presentes (Solís, 1999). Nuestros resultados permitirán que los mecanismos de transición entre el binomio de Newton y la serie de Taylor profundicen las cuestiones teóricas y metodológicas para establecer la reorganización del discurso matemático escolar desde la matematización del movimiento y considerando como eje organizador la noción de predicción.