436 resultados para Funções inteiras
Resumo:
Un estudio del dominio de una función racional y sus asíntotas verticales.
Resumo:
En esta investigación se contrastan los desempeños de los alumnos ingresantes a la Facultad de Medicina (FMED) de la UDELAR con los de las Facultades de Ciencias Empresariales (FCE) y de Ingeniería y Tecnologías (FIT) de la UCU, en 14 ítems comunes a las pruebas de evaluación diagnóstica que cada Facultad de las mencionadas propone a los alumnos que ingresan a ellas. Los alumnos ingresantes se han clasificado según su orientación en el bachillerato: Ingeniería, Ciencias Económicas y Medicina y en tres niveles, según su desempeño en la prueba diagnóstica: bajo, medio y alto. Se comparan los resultados obtenidos por los alumnos, con la finalidad de establecer si existe asociación entre la variable “orientación en el bachillerato” y la variable “desempeño en la prueba diagnóstica” Finalmente, se presentan algunas conclusiones y se plantean posibles continuaciones de esta investigación.
Resumo:
El presente trabajo profudiza sobre las nociones de nota musical e intervalo musical en sentido geométrico y aritmético. El concepto aritmético de nota musical aporta a los alumnos la idea de que una misma cosa (una nota) se puede mostrar con distintas apariencias(diferentes frecuencias), el concepto de nota musical se expone a partir del movimiento de dos móviles con movimiento uniforme. A partir de estos problemas dinámicos se da un procedimiento geométrico para determinar cuatro puntos en cuaterna armónica. Esta construcción proporciona un método para dividir armónicamente el intervalo de una octava mediante las notas tercera y quinta y permite construir acordes perfectos y comprender la razón de la diferente separación entre los trastes de una guitarra.
Resumo:
Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.
Resumo:
Se espera que esta iniciativa sea bien acogida y contribuya, aunque sea mínimamente, a fomentar la colaboración y el intercambio de ideas entre todos los colegas interesados en mejorar la educación matemática mediante el uso de la tecnología de bolsillo.
Resumo:
En este trabajo partimos de un modelo teórico sobre el significado de los objetos matemáticos en que se consideran seis elementos diferenciados y se distingue entre el significado dado al objeto en una cierta institución de enseñanza y el personal adquirido por un alumno dentro de la institución. Utilizamos estas ideas para analizar los distintos significados históricos de la probabilidad y cómo han sido tenidos en cuenta en la enseñanza secundaria. Finalizamos con algunas recomendaciones para mejorar la enseñanza de la probabilidad.
Resumo:
¿Cómo se logran esas bonitas y suaves curvas en la pantalla de un ordenador? Parece que fluyen suavemente y no tienen ese efecto desigual que sale si dibujas un montón de puntos y los unes con segmentos rectilíneos. La razón es que el software muestrea los dibujos y usa métodos de interpolación suave. A menudo, el método de interpolación es el llamado de los splines cúbicos, que aprovecha inteligentemente ciertos conceptos matemáticos corrientes, como mostraremos a continuación.
Resumo:
Se presenta una manera de solucionar ecuaciones cuadráticas a partir de las proposiciones 5 y 6 del libro II de los Elementos de Euclides. Se estudian estas proposiciones, su demostración y aplicación en la solución de las ecuaciones cuadráticas resaltando su valor didáctico. Se presenta además la solución de algunas de las ecuaciones cuadráticas que distinguía Al-Kharizmi, quien utilizaba, al igual que Euclides, la aplicación de áreas en su resolución.
Resumo:
El interés de este trabajo es ilustrar un tópico a través del cual se pueda establecer relación entre las matemáticas y la física en el nivel de educación media. Se consideran algunos aspectos relacionados con el Principio de Fermat que se pueden desarrollar para profundizar los conocimientos de los estudiantes en cuanto a geometría, cálculo diferencial y física, asignaturas que, por lo general, se abordan desvinculadas una de la otra.
Resumo:
La estadística se ha convertido en un instrumento fundamental del análisis de datos en las diferentes áreas de conocimiento. Bajo la necesidad de transmitir una herramienta que se relacione con los resultados obtenidos, su enseñanza debe tener en cuenta el marco en el cual se validan los resultados. Proponemos un análisis de los diferentes aspectos involucrados en este proceso. Se espera realizar una descripción de los correspondientes marcos de referencia en los cuales se tiene en cuenta tanto la naturaleza epistemológica de los contenidos, los planos cognitivo y didáctico, todos ellos enmarcados en aspectos socioculturales.
Resumo:
Parece mentira que viviendo los terrícolas en una esfera (bueno, casi), sin embargo, me conozcan tan poco. Aquí se realiza un estudio a la esfera.
Resumo:
En este trabajo recogemos un breve resumen de la tesis doctoral "aspectos epistemológicos y cognitivos de la resolución de problemas de matemáticas bien y mal definidos. Un estudio con alumnos del primer Ciclo de la Eso Y maestros en formación" que, bajo la dirección de los Doctores D. Martín M. Socas Robayna y la Doctora Josefa Hernández Domínguez, ha sido realizada, por M. Aurelia Noda Herrera, e el área de didáctica de las matemáticas del departamento de análisis matemático.
Resumo:
En este trabajo se plantea la necesidad de dar a conocer, en los últimos cursos de secundaria, contenidos sobre algunas problemas de tipo combinatorio, los modelos matemáticos correspondientes y, en su caso, algún método de resolución fácil de aplicar. La ilustración elegida para cumplir con este propósito es la de los problemas de planificación de proyectos, muy importantes en aplicaciones económicas, de organización y gestión, de las ingenierías, etc., y, por tanto, de mucho interés para motivar su estudio y resolución.
Resumo:
En este artículo se pretende analizar los problemas que surgen en el desarrollo de los contenidos referentes a intervalos de confianza en los distintos bachilleratos en los que están incluidos, y atacar éstos mediante la utilización de herramientas informáticas, en particular con el Matemática 3.0, incluyendo un posible notebook a partir de unas funciones programadas especialmente para hacer más fácil e intuitiva a los alumnos la compresión de los conceptos a desarrollar.
Resumo:
En este artículo recordamos los objetivos, métodos, evolución histórica y desarrollo den España de la nomografía: el cálculo de valores de funciones mediante el empleo el empleo de tablas gráficas (nomogramas). Esta ciencia auxiliar fue creada por M. d' Ocagne en 1891 y, tras una rápida difusión, alcanzó su cenit en los años de la Gran Guerra. Cayó en desuso como materia de investigación en los años 50 con el ocaso de los métodos geométricos y la irrupción de los ordenadores.