36 resultados para comportamentos-problema
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.
Resumo:
Considerando el concepto de aprendizaje sistémico, en el que se vinculan en relación dinámica: el docente, el alumno y el conocimiento, interesa conocer la relación entre las concepciones y las competencias de los docentes de matemática de enseñanza media en relación con el tema “el rol del problema en la formación matemática de los alumnos de la Escuela Media”. Para ello se analizan las respuestas de profesores a cuestiones agrupadas en cuatro categorías de preguntas referidas a sus concepciones sobre la naturaleza del problema y a la ubicación del problema en la planificación de la clase.
Resumo:
Este trabajo se estructura en torno a la evolución (no histórica)del problema de la Educación Matemática. Una vez constatado el fracaso de la respuesta pedagógica a dicho problema, surge la Didáctica de las Matemáticas que lo aborda tomando en consideración, de manera integrada, "lo matemático" y "lo pedagógico", lo que provoca una doble ruptura: con la Pedagogía y con los modelos epistemológicos ingenuos, transparentes e incuestionables del conociminento matemático. En la segunda parte del trabajo se esquematizan muy brevemente las respuestas que proporcionan a dicho problema los dos principales Programas de Investigación en Didáctica de las Matemáticas: el Programa Cognitivo y el Programa Epistemológico.
Un problema curioso para la comprensión de las determinaciones del tipo infinito e infinito negativo
Resumo:
Muchos alumnos de cursos posteriores al segundo grado de BUP tienen a nivel de información, el conocimiento de los límites del tipo infinito y menos infinito. Saben que son indeterminadas, pero en principio, el concepto no está suficientemente integrado en su estructura racional. Para corregir esto, les sugiero la resolución del siguiente problema, que no recuerdo de donde lo tomé o a quién se lo oí.
Resumo:
Este artículo tiene como objeto de investigación el aprendizaje y como objeto matemático el concepto de función con estudiantes sordos de educación básica y media, con el propósito de mostrar cómo el problema social y cultural que tiene esta población para el aprendizaje de las matemáticas puede ser minimizado mediante la intervención del profesor, a partir de secuencias didácticas de enseñanza y la asistencia de un entorno informático. Para ello, se ha utilizado como marco teórico las situaciones didácticas de Brousseau y los registros de representación semiótica de Duval, y como metodología la Ingeniería didáctica.
Resumo:
A mediados del siglo XVIII el prolífico y genial matemático suizo leonhard Euler analizó y resolvió un juego de probabilidad con cartas llamado Rencontre. Como otros problemas probabilísticos, el enunciado es fácilmente comprensible, su análisis no es elemental y el resultado parece contrario a la intuición o, cuando menos, sorprendente. Euler utiliza, para la resolución del problema, la combinatoria y la suma de ciertas sucesiones. En este artículo se pretende llegar a la misma conclusión recurriendo a unas matemáticas más cercanas al alumno de bachillerato.
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
El pasado 15 de abril se cumplían 300 años del nacimiento de uno de los cuatro matemáticos más geniales de la historia, Leonhard Euler. Para mí, los otros tres, y que cada cual elija su orden, son Arquímedes, Newton y Gauss. Si la calificación la hiciésemos atendiendo a la cantidad de los trabajos de primer orden realizados por cada uno de ellos, sin duda Euler ocuparía el primer lugar. A lo largo de su extensa vida Euler produjo más de ochocientos libros y miles de artículos y trabajos. Sus obras completas Opera Omnia ocupan más de 80 volúmenes. Sin lugar a dudas es el matemático más prolífico de la Historia. Pero, con ser importante la cantidad de trabajos, el aprecio de los matemáticos contemporáneos y posteriores a él se debe más a la riqueza, originalidad, belleza y genial agudeza de su obra que a su volumen.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
Todo tiene un final, incluso una etapa de progreso y buen haber como este último periodo de nuestra querida suma. Emilio y Julio cumplido de sobra y pasan el testigo. Sirvan estas líneas introductoriass a nuestra también última entrega isoperimétrica para mostrarle nuestro reconocimiento. Sobresaliente, cum laude por unanimidad, amigos.
Resumo:
Hemos dejado para el final aquella resolución por la que comienza la mayoría del profesorado de matemáticas: la basada en el uso del cálculo diferencial. Siempre que hemos propuesto el problema que planteábamos en la primera entrega en algún curso o seminario, la forma de abordarlo ha sido echando mano de las derivadas para la búsqueda de extremos de determinada función área. Como se habla de enmarcar un cuadro de 3 m de perímetro, siempre han comenzado pensando en formas rectangulares, por lo que el problema que se planteaban solía ser el siguiente: entre todos los rectángulos de igual perímetro P, el cuadrado de lado P/4 es el que encierra la mayor área.
Resumo:
A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.
Resumo:
El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.
Resumo:
¿cuál es el camino más corto entre dos puntos del plano? ¿Y del espacio? ¿Y sobre una superficie cualquiera? ¿Qué forma tiene el tobogán más rápido? ¿Cuál es la curva plana que encierra mayor área entre todas las que tienen una misma longitud?
Resumo:
Siempre me ha interesado la historia de las matemáticas cuando la resolución de problemas ha sido su columna vertebral. Ahora que estamos en el 2000, tenemos muy presente aquella famosa lista de 23 problemas dados por Hilbert hace 100 años.