26 resultados para Variación genérica
Resumo:
Este documento se elabora a partir de una revisión inicial de literatura donde se analizaron los Lineamientos Curriculares, los Estándares Básicos de Competencia y algunos estudios e investigaciones en el campo de la variación y la trigonometría. Desde los elementos teóricos observados en la literatura se hizo indispensable un análisis de algunos libros de texto frente al tipo de ejercicios que se proponía para abordar la trigonometría plana; de este análisis surgió la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones funcionales entre los ángulos y los lados de un triángulo; de este modo, se espera aportar elementos para superar la idea de que las relaciones trigonométricas son “fórmulas” para calcular datos fijos y desconocidos de un triángulo.
Resumo:
En el siguiente escrito se describe una propuesta didáctica para introducir a los estudiantes al concepto matemático de la derivada. Esta propuesta se basa en la idea de variación la cual es representada en contextos numéricos, físicos y gráficos. La representación y manipulación de las ideas matemáticas en juego durante el desarrollo de la propuesta se ven apoyadas en el uso de dispositivos tecnológicos tales como calculadoras gráficas y un sensor de movimiento.
Resumo:
En este escrito se presentan resultados de un estudio socioepistemológico para diseñar unidades didácticas basadas en prácticas y verificar la efectividad de organizadores de contenido matemático en su diseño, en el área de Precálculo. En el estudio se buscó determinar condiciones y situaciones para la generación de aprendizajes matemáticos asociados a las nociones de variación y cambio. Se identificó que la relación entre las experiencias de los estudiantes, la naturaleza variacional de las situaciones y la matemática en actividades de naturaleza social fueron un factor determinante en el éxito en la resolución de los diseños de aprendizaje.
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.
Resumo:
Este documento centra su atención en la noción de variable como elemento básico de la construcción de conceptos relacionados a fenómenos de variación y cambio. Partimos de que la variable no es una idea construida como un objeto o proceso aislado, sino que surge necesariamente de la relación de al menos dos entidades cambiantes que en la mayoría de los casos una de ellas es la variable tiempo. Pretendemos realizar el estudio de la variable desde diferentes dimensiones: la epistemológica, la cognitiva, la didáctica y la sociocultural, para poder tener elementos que nos permitan determinar qué procesos favorecen la construcción de esta noción y asimismo realizar su caracterización.
Resumo:
El presente trabajo se inscribe dentro de la línea de investigación denominada Pensamiento y Lenguaje Variacional, trazada por el Dr. Cantoral. Esta línea de investigación estudia la articulación entre la investigación y las prácticas sociales que dan vida a la matemática de la variación y el cambio. El contexto general en el que se ubica el presente trabajo es el programa de investigación desarrollado por el Dr. Crisólogo Dolores cuyo objetivo principal se centra en el estudio de los procesos de desarrollo del pensamiento y lenguaje variacional en condiciones escolares (Dolores, 1996). En particular nuestro interés se enfoca en el estudio de la estabilidad y cambio de las concepciones alternativas relativas al análisis del comportamiento de funciones a través de sus gráficas, pues existen evidencias de que esas interpretaciones primarias se arraigan en la mente de los estudiantes e interfieren en el desarrollo del pensamiento variacional. De hecho, asumimos que parte importante del desarrollo de esta forma de pensamiento consiste en el dominio de los procesos de franqueo o superación de esas concepciones alternativas.
Resumo:
Con el propósito de superar algunas dificultades de los profesores en la integración de tecnologías en la enseñanza de las matemáticas, se presenta una secuencia de análisis de las trasformaciones geométricas de la función exponencial natural, definida por f(x)=e^ax, que se apoya en el uso del GeoGebra. Tal secuencia permite caracterizar familias de curvas asociadas a la expresión anterior, a partir del análisis de las transformaciones geométricas “deformación” y “reflexión” experimentadas por estas curvas tras la variación del parámetro a. En el diseño de la secuencia se tomó en cuenta aspectos de teóricos, instrumentales y didácticos, que se consideran pertinentes para realizar el análisis. El uso de esta secuencia favorece el desarrollo de las capacidades para la integración eficiente de las tecnologías en la enseñanza de la Matemática.
Resumo:
Con base en un análisis de los lineamientos curriculares, los estándares básicos de competencia y algunos estudios e investigaciones sobre la variación asociada al estudio de la trigonometría plana, decidimos aplicar la técnica del análisis de contenido a algunos libros de texto del grado décimo frente al tipo de ejercicios y “problemas” que se proponen para abordar el estudio de las relaciones trigonométricas; este análisis muestra que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular datos fijos y desconocidos de un triángulo. Estos resultados muestran la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.
Resumo:
Se presenta el tema de las fracciones continuas de forma genérica, tratando de mostrar diferentes campos de investigación didáctica relacionados con conceptos básicos de las matemáticas: número real, aproximación racional, sucesiones, límite de sucesiones, recursividad y otros, que sin ser fundamentales en la enseñanza media, permiten desarrollar el razonamiento nuestros alumnos.