31 resultados para Respuestas Estatales
Resumo:
En el ámbito de la investigación en Matemática Educativa son conocidas las dificultades que plantean la enseñanza y el aprendizaje de contenidos del cálculo. En la búsqueda de alternativas que favorezcan un desarrollo adecuado de métodos de pensamiento propios de la matemática, diseñamos y pusimos a prueba una secuencia didáctica para la introducción del concepto de derivada. Consideramos como hipótesis básica que el desarrollo de ideas variacionales puede propiciar una mejor comprensión y apropiación de esta noción, adoptando la posición de que el manejo de sistemas de representación es fundamental para la actividad cognoscitiva del pensamiento. Presentamos algunas de las actividades trabajadas en clase y un breve análisis sobre su implementación y las respuestas de los alumnos.
Resumo:
La evaluación ha tomado un destacado lugar. Es una actividad prioritaria en las aulas, que causa impacto, y cuyos resultados en buena medida representan un reto para los profesores. En esta investigación pudimos constatar que al menos en lo explícito del discurso, los diseños didácticos para la enseñanza de las Matemáticas que se centran en el alumno van mejorando lentamente, pero cuando se concretan los procesos de evaluación surge una contradicción, pues el enfoque no ha sido realmente modificado, pues los aprendizajes de los estudiantes se proyectan de manera limitada pues para evaluarlos se construyen formatos tradicionales, con estructura simple que demanda respuestas directas, cortas y sin mucho trabajo de reflexión por parte del alumno. Hace falta más fundamentación en los apoyos didácticos que los profesores reciben, y el renglón de la evaluación de los aprendizajes matemáticos en el aula queda como una verdadera asignatura pendiente en la formación magisterial.
Resumo:
En este trabajo presentamos el estudio semiótico de las respuestas de estudiantes mexicanos de Educación Secundaria y Bachillerato con el fin de detectar conflictos semióticos sobre la comprensión del concepto de mediana. Se observa mayor dificultad en ambos grupos al resolver estos problemas de un cuestionario sobre medidas de tendencia central. Utilizamos el Enfoque Onto‐Semiótico propuesto por Godino y colaboradores. Clasificamos las respuestas en categorías de los conflictos semióticos encontrados y comparamos los resultados en ambos grupos de estudiantes.
Resumo:
Considerando el concepto de aprendizaje sistémico, en el que se vinculan en relación dinámica: el docente, el alumno y el conocimiento, interesa conocer la relación entre las concepciones y las competencias de los docentes de matemática de enseñanza media en relación con el tema “el rol del problema en la formación matemática de los alumnos de la Escuela Media”. Para ello se analizan las respuestas de profesores a cuestiones agrupadas en cuatro categorías de preguntas referidas a sus concepciones sobre la naturaleza del problema y a la ubicación del problema en la planificación de la clase.
Resumo:
El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.
Resumo:
El presente trabajo forma parte de una investigación en la línea de la construcción social del conocimiento. El tema central de este reporte es la construcción escolar del infinito y las dificultades que éste concepto presenta debido a su origen sociocultural por un lado y matemático por otro. Se produce entonces un choque entre esos dos infinitos: el construido socialmente y desconocido por la escuela, y el matemático, que se utiliza en la escuela, pero es desconocido por los alumnos. Para indagar sobre la naturaleza del infinito con que se trabaja en el aula, se presenta y analiza una actividad, centrada en el estudio de funciones, y en particular de la existencia y cálculo de asíntotas que fue llevada a cabo con alumnos de escuela media. Las respuestas demuestran que el infinito construido fuera de la escuela sigue marcando en ellos la forma en que el infinito funciona y que el infinito matemático les presenta sólo conflictos y dudas.
Resumo:
El objetivo de este estudio es determinar las dificultades que estudiantes de cuarto de ESO, de bachillerato y del Máster de Profesor de Educación Secundaria de la especialidad de Matemáticas tienen con la operatoria y el orden, cuando realizan cálculos con números decimales periódicos. El trabajo se sustenta en un estudio de Rittaud y Vivier, del cual se hace una réplica de una parte de su cuestionario que utilizamos para la toma de datos. El análisis de las respuestas de los estudiantes permite identificar errores y carencias en la enseñanza, conducentes a un esquema de clasificación e interpretación de las actuaciones de los estudiantes.
Resumo:
Este trabajo complementa otras investigaciones que evidencian las “disfunciones escolares” que el operador raíz cuadrada presenta en el tránsito del contexto aritmético al algebraico y del algebraico al funcional. Juárez (2007) muestra cómo estudiantes de bachillerato en el estado de Guerrero, México, no logran detectar la problemática que se genera al considerar a las operaciones de potenciación y radicación como inversas sin considerar ninguna restricción. En este trabajo mostramos el rediseño de la secuencia de actividades de Juárez y los resultados de su aplicación a estudiantes de bachillerato en un centro de estudios científicos y tecnológicos (CECyT) del Instituto Politécnico Nacional (IPN) en el Distrito Federal, México. Mostraremos la nueva secuencia y las consideraciones que hicimos para modificarla, así como las respuestas de algunos estudiantes. Mostraremos que el considerar a las operaciones de potenciación y radicación como inversas permea en el conocimiento de los estudiantes.
Resumo:
Este estudio tiene como objetivo examinar cómo los futuros profesores de secundaria (EPS) reconocen evidencias de la comprensión del proceso de generalización en estudiantes de secundaria. Los EPS realizaron dos tareas: (1) describir las respuestas dadas por estudiantes de secundaria a dos problemas de generalización lineal y agrupar las que reflejaban características comunes de la comprensión del proceso de generalización; (2) participar en un debate virtual sobre las características de la comprensión del proceso de generalización. Los resultados indican que la participación en el debate virtual permitió a los EPS centrar su mirada en las ideas que subyacen en el proceso de generalización (generalización cercana y lejana e intento de expresar la regla general, pasando de una estrategia aditiva a una funcional) más que en el procedimiento realizado.
Resumo:
Este trabajo forma parte de una investigación que pretende analizar la concepción que tienen los docentes de la noción de demostración dentro de la matemática y la influencia en sus prácticas. En él se plantea la necesidad de diferenciar diversas funciones para la demostración en matemática analizando su presencia en las concepciones de docentes y estudiantes del profesorado de matemática. El papel y la función de la demostración en el aula, o ha sido totalmente ignorada o bien se presta como medio de certeza, y en menor medida de explicación. Estas funciones más priorizadas se pueden vislumbrar a través de las respuestas obtenidas.
Resumo:
Frecuentemente, al iniciar el estudio de conceptos básicos del análisis matemático, nos encontramos con dificultades y errores relacionados con la división por cero. La necesidad de dar respuesta a esta problemática, da origen a este trabajo que retoma las respuestas dadas por un grupo de alumnos de la escuela media que constituyen las evidencias sobre las cuales se inicia el proceso de investigación que se encuentra en su primera etapa de realización y cuyos resultados parciales se exponen aquí. Se enmarca la tarea en la perspectiva socioepistemológica indagando en los orígenes y evolución de este conocimiento, analizando los alcances y efectos del discurso matemático escolar vigente en la educación media y contemplando las concepciones de los alumnos acerca del cero y la división construidas en ambientes escolarizados y no escolarizados.
Resumo:
Este trabajo se estructura en torno a la evolución (no histórica)del problema de la Educación Matemática. Una vez constatado el fracaso de la respuesta pedagógica a dicho problema, surge la Didáctica de las Matemáticas que lo aborda tomando en consideración, de manera integrada, "lo matemático" y "lo pedagógico", lo que provoca una doble ruptura: con la Pedagogía y con los modelos epistemológicos ingenuos, transparentes e incuestionables del conociminento matemático. En la segunda parte del trabajo se esquematizan muy brevemente las respuestas que proporcionan a dicho problema los dos principales Programas de Investigación en Didáctica de las Matemáticas: el Programa Cognitivo y el Programa Epistemológico.
Resumo:
Este trabajo es parte de un proyecto de investigación sobre la aplicación de tecnología computacional en la enseñanza y aprendizaje de matemáticas con alumnos de nivel medio básico o secundaria (séptimo a noveno grado) y nivel medio superior o bachillerato (décimo a doceavo grado), en particular, trata de entender la función mediadora del efecto de “arrastre” del software de geometría dinámica en la cognición de sujetos que estudian las nociones de variación y variable. Aquí reportamos los resultados de una exploración, usando Cabri, en el aprendizaje de esas nociones con estudiantes de nivel medio básico de 13-14 años de edad. Se describen las actividades, las respuestas de los estudiantes y una experiencia que sugiere el potencial de la verbalización de los resultados por los estudiantes en el proceso de simbolización algebraica.
Resumo:
Exponemos en este documento algunos resultados de una investigación cualitativa que tiene como objetivo diseñar experiencias que posibiliten el desarrollo de habilidades comunicativas (NCTM, 2000) en estudiantes de once grado, y analizar como dichas habilidades contribuyen en el progreso de su pensamiento algebraico. Este estudio surge para atender una problemática identificada en estudiantes de nuevo ingreso a la universidad, quienes en una prueba inicial dejan ver que sus respuestas incorrectas refieren más a su baja interpretación de enunciados que a la incorrecta aplicación de algoritmos. Para la consecución de dicho objetivo se diseña e implementa un plan de intervención con algunos casos de estudio, quienes en las primeras etapas de implementación del plan diseñado recaen en las mismas dificultades.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.