26 resultados para Pruebas (Proceso civil)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las deducciones que a lo largo de la historia se han realizado en torno al teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Algebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ernest (1989) afirmó que las creencias y concepciones de un profesor regulan su práctica de enseñanza en el aula. De esta manera, si se desean cambios en las prácticas de los profesores de matemáticas, al parecer, deben cambiar sus creencias y concepciones. Al respecto se generó la pregunta: ¿es posible cambiar las creencias y concepciones de los profesores? (Thompson, 1991). Las investigaciones de Senger (1999), D’Amore y Fandiño (2004) y Pehkonen (2006), entre otras, han arrojado resultados positivos acerca de que las creencias y concepciones de los profesores pueden cambiar. En este artículo se presentarán los resultados de una investigación cuyo objetivo primordial fue identificar y caracterizar cambios en las concepciones de los estudiantes para profesor de sexto semestre de Licenciatura en Educación Básica con Énfasis en Matemáticas (Bogotá, Colombia). En esencia se presentarán resultados que muestran las concepciones iniciales de los estudiantes y su cambio al finalizar la intervención.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este estudio participaron profesores de matemáticas y estudiantes de tercer grado de bachillerato, a los cuales se les aplicó una prueba de matemáticas, con tres propósitos: primero conocer sus fortalezas y debilidades ante una prueba objetiva y estandarizada de matemáticas; segundo, determinar cursos de actualización para los docentes que conviertan sus debilidades en fortalezas; y tercero, que los profesores conozcan las debilidades de los estudiantes y apliquen las estrategias pertinentes para potenciar su aprendizaje. De los datos obtenidos, se detectaron los reactivos de mayor dificultad, en el caso de los docentes, los reactivos con un porcentaje menor o igual al 90% de respuestas correctas; y en el caso de los estudiantes, los de un porcentaje de respuestas correctas menor o igual al 60%. Los resultados señalan que las debilidades de los docentes, son las debilidades de los estudiantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudio tiene como objetivo examinar cómo los futuros profesores de secundaria (EPS) reconocen evidencias de la comprensión del proceso de generalización en estudiantes de secundaria. Los EPS realizaron dos tareas: (1) describir las respuestas dadas por estudiantes de secundaria a dos problemas de generalización lineal y agrupar las que reflejaban características comunes de la comprensión del proceso de generalización; (2) participar en un debate virtual sobre las características de la comprensión del proceso de generalización. Los resultados indican que la participación en el debate virtual permitió a los EPS centrar su mirada en las ideas que subyacen en el proceso de generalización (generalización cercana y lejana e intento de expresar la regla general, pasando de una estrategia aditiva a una funcional) más que en el procedimiento realizado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El trabajo se inscribe en el marco del proyecto de articulación e integración de la formación docente, entre la Universidad Nacional de Tucumán y Ministerio de Educación y Cultura de la Provincia de Tucumán, denominado: “Mejoramiento del Proceso de Desarrollo del Eje de la Práctica Profesional en Educación Científica, en las Carreras de Profesorado de Educación Primaria y Profesorado de Matemática y su Impacto en las Escuelas Seleccionadas de los distintos niveles”. Fue destinado a docentes del nivel primario y medio que reciben residentes, residentes y profesores en matemática de los institutos superior de formación docente (ISFD).Se desarrollaron distintas acciones entre las que se encuentran: Jornadas de profundización disciplinar y didáctica, seminarios taller, talleres institucionales e interinstitucionales de intercambio entre la universidad y los ISFD e implementación de un foro de relatos de experiencias. Se evaluaron avances y obstáculos encontrados en la ejecución y de cómo el proyecto favoreció la articulación interinstitucional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este documento contiene los aspectos esenciales de una conferencia dictada por el autor en el marco de las actividades de la RELME 16 celebrada en la Habana, Cuba. El tema se refiere a las concepciones alternativas relativas al análisis de funciones en ambientes gráficos. En especial se analizan la importancia de esas concepciones en tanto procesos cognoscitivos que interfieren en los procesos de aprendizaje, las posibilidades de ser cambiadas por otras aceptables y su permanencia en la mente de los estudiantes a pesar de emplear diseños instruccionales para removerlas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para conocer cómo están de conocimientos matemáticos elementales los alumnos que acceden por primera vez en las diplomaturas de maestro a la materia de matemáticas, se les han aplicado las pruebas de diágnóstico para alumnos de sexto curso de primaria de las comunidades autónomas de Murcia y Madrid. La muestra la forman alumnos de las universidades de Murcia, La Laguna y Oviedo y de varias especialidades. Los resultados se analizan por ítem, por variables de corte, se efectúa un análisis descriptivo e inferencial y se comparan los resultados de las dos pruebas con los obtenidos por los alumnos de sexto curso de primaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este articulo presentamos el problema de reflexión de un grupo de trabajo en el que profesores de secundaria e investigadores en educación matemática hemos desarrollado y experimentado una secuencia de actividades ricas en el ámbito de las geometrías de rotaciones. Junto con el concepto de desarrollo de actividad rica presentamos la revisión de algunas contribuciones procedentes de la investigación y analizamos los resultados fruto de su experimentación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se estudia la influencia y el papel de un aspecto del contexto exterior producido por elecciones de tipo lingüístico. Cuando el lenguaje escogido es de tipo coloquial, las primeras preguntas son informales, sobre aspectos extraescolares, y la discusión numérica atañe a N, hablamos de contexto natural. Este contexto parece inducir, en el sujeto sometido a la prueba, la convicción implícita de que debería contestar según modelos intuitivos, que dependen de la competencia que adquirió en los primeros niveles de escolarización o de modelos ingenuos. También examinamos el problema de la conciencia de los alumnos en situaciones de dificultad.