80 resultados para Objeto de aprendizaje
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
Teniendo en cuenta que la educación tradicional es vista como un modelo pedagógico que entre otras: i) se enfoca en desarrollar en los estudiantes conocimientos algorítmicos, ii) hace un énfasis en la ejercitación de procedimientos, iii) no tiene en cuenta el desarrollo social del individuo dentro de una comunidad y tampoco se enfoca en el proceso que tiene un estudiante al desarrollar una actividad con determinado objeto matemático; hoy en día se propende por buscar perspectivas que le permitan a los estudiantes encontrarle sentido a las actividades que el profesor lleva al aula. A la luz de lo anterior, en Colombia han surgido diversas tendencias que han buscado la renovación pedagógica, didáctica y conceptual en la educación escolar, enmarcadas –la mayoría de estas propuestas– dentro de la idea de que los estudiantes se relacionen directamente con el conocimiento, mientras que el profesor toma una postura de orientador del proceso de aprendizaje del estudiante. Teniendo en cuenta lo anterior, muchos profesores han buscado cambiar sus prácticas tradicionales de enseñanza, un ejemplo de ello lo encontramos en el colectivo de profesores de la Institución Educativa Distrital Colegio Paulo Freire de la localidad de Usme (Bogotá, Colombia); donde los profesores –en concordancia con las ideas del pedagogo Paulo Freire– comparten, como parte de su proyecto educativo, el hecho de ver a la enseñanza como un proceso que debe generar en los estudiantes una comprensión crítica de la realidad social, política y económica en la que él está inmerso.
Resumo:
Actualmente el sistema educativo brinda autonomía a las instituciones en materia de evaluación, lo que conlleva a replantear las prácticas evaluativas en procura de determinar la efectividad de la apropiación de los desempeños de los estudiantes. Además, se hace necesario hacer una revisión pedagógica que reflexione acerca de las actuaciones de los docentes frente a la evaluación del aprendizaje de sus estudiantes, de manera que puedan ser caracterizadas y revaluadas para mejorar los procesos de enseñanza al interior de su quehacer cotidiano, de esta manera nuestra investigación pretende dar respuesta al siguiente interrogante: ¿Cómo se relacionan las prácticas evaluativas de los docentes con los procesos de la enseñanza y el aprendizaje de la matemática escolar en secundaria y media?, para ello tendremos en cuenta otras preguntas orientadoras, tales como: ¿Qué entiende el profesor por evaluación del aprendizaje? ¿Qué evalúa el profesor de matemáticas en secundaria? ¿Cómo realiza dicha evaluación? ¿Para qué realiza la evaluación en matemáticas? ¿Qué uso le da a los resultados de la misma? ¿Quiénes intervienen en el proceso de la evaluación en matemáticas? ¿Qué relación se puede establecer entre la triada enseñar, aprender y evaluar en matemáticas?
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.
Resumo:
Algunos programas funcionales de formación de profesores pretenden ofrecer oportunidades para que los profesores en formación desarrollen capacidades y competencias que les permitan utilizar nociones didácticas con el propósito de analizar un tema, producir información acerca de él y utilizar esa información para diseñar, implementar y evaluar una unidad didáctica. En este trabajo, presentamos nuestra posición sobre los procesos de aprendizaje de los profesores en formación en programas de formación de carácter funcional. Nos basamos en esta posición para fundamentar las estrategias que utilizamos para organizar el aprendizaje en un programa concreto de formación de profesores de matemáticas en ejercicio de educación básica secundaria y educación media en Colombia.
Resumo:
La enseñanza-aprendizaje de los objetos básicos del Análisis Matemático, en el nivel de Bachillerato y específicamente los fenómenos didácticos que emergen a lo largo del proceso de instrucción, ha constituido una problemática de investigación, en cuanto a los fenómenos didácticos que emergen a lo largo del proceso de instrucción, hoy vigente y en desarrollo. Tal y como indica Artigue (1998), para avanzar en la investigación han de efectuarse propuestas ligadas a enfoques de tipo ecológico y semiótico, donde las técnicas de reconstrucción del conocimiento matemático den explicaciones sólidas a tales problemas. En este trabajo, que se centra en el objeto: límite, tratamos de aportar una nueva visión del problema centrados en el objeto límite, por medio de un enfoque ontológico-semiótico de la cognición matemática (Godino, 2002).
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
En este informe, presentamos el análisis de datos de una pareja de estudiantes durante la resolución de un problema de generalización en una clase de matemáticas de secundaria (15-16 años). De acuerdo con las teorías interaccionistas del aprendizaje matemático, asumimos que el discurso establecido en la interacción en pareja es un factor clave de influencia en los procesos de construcción de conocimiento matemático. Hasta ahora, los resultados ponen de relieve la relación entre el uso de ciertos indicadores discursivos y los avances en la "intención argumentativa" de las estudiantes. La mayoría de intercambios con intención argumentativa vienen precedidos o acompañados por refutación y cuestionamiento, y en menor grado, validación. La refinación del análisis actual se está realizando dentro del trabajo de tesis doctoral de la primera autora.
Resumo:
En este trabajo exploramos la problemática de la enseñanza y el aprendizaje del análisis fenomenológico en un programa de máster de formación de profesores de matemáticas de secundaria en ejercicio basado en el modelo del análisis didáctico. Con base en la descripción de los aspectos teóricos y técnicos de este organizador del currículo, establecemos una serie de acciones que permiten describir la actuación de los profesores en formación en sus producciones escritas. Identificamos y caracterizamos la dificultad manifestada por los profesores en formación sobre las principales ideas que configuran este procedimiento.
Resumo:
Este capítulo presenta el diseño, implementación y evaluación de una unidad didáctica sobre ecuaciones lineales con una incógnita. Diseñamos e implementamos la unidad didáctica objeto de este trabajo teniendo en cuenta las dificultades que presentan los estudiantes en la traducción al lenguaje algebraico, el planteamiento y solución de ecuaciones lineales de primer grado y la solución de problemas con ecuaciones lineales de primer grado. La interpretación de frases de la cotidianidad que deben ser traducidas a un lenguaje formal para construir expresiones algebraicas y con ellas generar ecuaciones crean una barrera para la utilización real del álgebra. Para alcanzar un aprendizaje significativo de los procesos algebraicos es necesario dotar las actividades de significado dentro del contexto del joven y así tener un aprendizaje concreto que posteriormente sirva de plataforma para el uso de la ecuación como herramienta fundamental en la aplicación del algebra en contextos reales.
Resumo:
En la enseñanza y aprendizaje de las matemáticas los estudiantes deben interactuar entre sí y con el profesor. Los profesores que vinculemos en el aula de clase estrategias de trabajo colaborativo, debemos ser consientes de que no todos los grupos de trabajo; son grupos de trabajo colaborativo, por tanto debemos estar atentos a los interés, expectativas y motivaciones de los estudiantes, permitiendo que la clase de matemáticas sea una clase colaborativa, donde todos los participantes construyan el conocimiento, adquieren responsabilidades y compromisos; una clase que genere confianza, seguridad y respeto, para que todos los estudiantes se desenvuelvan en un ambiente favorable que les permita crear estrategias para abordar una situación problema, argumentar, justificar y validar sus inferencias, todo esto a través de la resolución de problemas.
Resumo:
El análisis de actuación corresponde al cuarto y último de los análisis que componen el análisis didáctico. Con él se cierra un ciclo de análisis y se enlaza con el comienzo de un nuevo ciclo. El interés de este módulo se centra en la planificación del seguimiento del aprendizaje de los escolares y del propio proceso de enseñanza durante la implementación de lo planificado en el análisis de instrucción, con objeto de comparar las previsiones que han hecho en dicha planificación con lo que sucederá cuando ésta se lleve a cabo en el aula. Esta comparación redundará en ajustes puntuales de la planificación durante el mismo proceso de instrucción, así en como reformulaciones globales, de cara a un nuevo ciclo de análisis didáctico.
Resumo:
El presente reporte articula el modelo educativo de van Hiele en su aspecto prescriptivo con la enseñanza de uno de los conceptos fundamentales del Análisis Matemático, continuidad local, a través de la implementación y el desarrollo de un Módulo de Aprendizaje que permite procesos de razonamiento en los estudiantes con el fin de promoverlos de un Nivel II a un Nivel III, el módulo es construido en correspondencia con los descriptores de fases para de dar cuenta de las estructuras mentales elaboradas. Posteriormente, en el análisis de cada uno de los tres casos, se describe en categorías en correspondencia los descriptores y donde se hace explícito como razonan los estudiantes en su paso del Nivel II al Nivel III respecto al concepto de continuidad local.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.