20 resultados para Interpretação geométrica
Resumo:
El proyecto CUBE es una propuesta de trabajo en el aula de Matemáticas donde a partir de la película CUBE (Vincenzo Natali, 1997) se desarrollan una serie de actividades introductorias a la Geometría Analítica tridimensional y a la visualización espacial geométrica. Consta de dos partes, una relativa al guión de la película y otra derivada hacia el desarrollo del currículo de 4º de ESO en el bloque de Geometría. Las características de la propuesta hacen que se presente como un proyecto abierto a la interdisciplinariedad e idóneo para la práctica del aprendizaje significativo en un contexto de prácticas procedimentales.
Resumo:
Este artículo se ha escrito con el objetivo de mostrar la superficie geométrica denominada banda de Möbius como herramienta para potenciar la motivación e interés de los alumnos, tanto de bachillerato como universitarios, en sus clases de Matemáticas. Esta superficie, que tiene varias propiedades muy curiosas, es en realidad un bucle girado, normalmente hecho de papel, fácilmente manipulable por los estudiantes. Para su construcción únicamente se necesitan lápiz, papel, pegamento y tijeras.
Una propuesta para la aproximación intuitiva de funciones por polinomios en la ESO y el bachillerato
Resumo:
Se extiende el concepto de aproximación de un número real al de aproximación de una función. En la primera fase, a partir de la suma de una progresión geométrica, se obtienen casos particulares de funciones polinómicas que aproximan un tipo concreto de funciones racionales. En la segunda fase se encuentran funciones polinómicas que aproximan cualquier función continua. El profesor utiliza la historia de las Matemáticas como recurso didáctico haciendo comentarios que recuerdan la evolución histórica de la aproximación de funciones en series de potencias. Este recorrido es el mismo que van a seguir los alumnos.
Resumo:
Este articulo ilustra cómo un problema ambiguamente formulado admite diferentes lecturas y soluciones, permitiendo así distintas aproximaciones según el nivel y las capacidades del alumno. El problema de optimización es explorado en un entorno de geometría dinámica (The Geometer's Sketchpad). Esta aproximación geométrica facilita la formulación de conjeturas y su prueba visual, allanando el camino a la prueba analítica, si ésta se considera pertinente.
Resumo:
Las fórmulas que empleamos para calcular el área de una superficie geométrica se basan en las medidas de longitudes de esas figuras, con el peligro de que se considere la superficie como una magnitud derivada de la longitud. Pero además estas fórmulas para el calculo de áreas dependen de la forma geométrica que se ha elegida como unidad de superficie: el cuadrado. Aunque esta elección es adecuada desde un punto de vista practico, si queremos formar mentes que sean capaces de resolver problemas mas generales y comprender el concepto de superficie sin reducir su calculo a la mera aplicación de una fórmula, debemos indicar Opciones alternativas y una de ellas puede ser relativizar la elección de la unidad de medida. En este artículo hemos tomado como unidad de superficie un triangulo equilátero de lado unidad con el cual hemos revisado y mostrado la relatividad del proceso de cálculo de superficies áreas de figuras planos.