28 resultados para Embargo
Resumo:
En este documento se caracterizan los usos de las gráficas. Se caracteriza su uso en la enseñanza tradicional, en los medios de comunicación, para el desarrollo del pensamiento y el uso social que se les da en las comunidades de profesionales o en la vida diaria de la gente. En la enseñanza tradicional son utilizadas como auxiliares didácticos que hacen posible la visualización de datos. Hoy día las gráficas son muy usuales en los medios de comunicación como recursos para transmitir información a núcleos poblacionales amplios, sin embargo las graficas socialmente compartidas requieren de lectores con una cultura amplia que les posibilite entenderlas y darles el sentido adecuado. Las graficas no solo son necesarias transmitir información, son útiles para favorecer el desarrollo del pensamiento y lenguaje variacional. Las habilidades como: la estimación, el cálculo, la predicción, el planteo de conjeturas, para identificar lo que cambia, para correlacionar cambios, para determinar las cualidades del cambio, etc. pueden contribuir al desarrollo de este tipo de conocimiento.
Resumo:
Los 5 poliedros regulares han sido modelo de la ciencia para los griegos y modelo de la astronomía para Kepler. Sin embargo, a pesar de su gran valor epistemológico su estudio es normalmente muy superficial en los cursos de Secundaria. Hace 20 años me formulé esta sencilla pregunta: ¿Cómo podemos calcular el volumen del icosaedro y del dodecaedro regular, conociendo solamente la medida de la arista? Esta pregunta dio lugar a una fascinante investigación, que comenzó en la búsqueda de diferentes medios para construir poliedros (se puede ver en la foto de la derecha un modelo a usar durante el taller) , un trabajo muy interesante con el álgebra de los irracionales cuadráticos, el uso de la trigonometría y el descubrimiento de varias y sorpresivas propiedades geométricas relacionadas algunas con el número áureo. Durante el curso los participantes aprenderán a construir, con regla y compás el pentágono regular(comenzando con su lado) , de la forma más simple y exacta, con su justificación paso a paso. Esto es imprescindible ya que en ambos el icosa y el dode hay numerosos pentágonos regulares. Este curso o taller es tan sólo un pequeño paseo en el increíble mundo de los 5 poliedros regulares, un mundo lleno de tesoros matemáticos, un mundo que espera a ser explorado y descubierto.
Resumo:
Los estudiantes se enfrentan diariamente al reto de comunicarse haciendo uso del lenguaje propio de las matemáticas al abordar las diferentes actividades de clase. Sin embargo, ellos presentan dificultades que le impiden realizar algunos procesos matemáticos y saber cuál estrategia emplear. Esta situación no les permite interpretar y argumentar adecuadamente los procedimientos efectuados. La pista algebraica es un recurso facilitador del desarrollo de las competencias matemáticas de comunicación y formulación, comparación y ejercitación de procedimientos.
Resumo:
Concebimos que la modelación de fenómenos es una práctica que está ligada a la construcción de conocimientos matemáticos y en este sentido se han realizado investigaciones entorno a su incorporación al contexto escolar. Sin embargo, el incorporar la experimentación en el aula de matemáticas conlleva dificultades, una de ellas es la carencia de material de laboratorio. El laboratorio virtual es un proyecto que intenta suplir la ausencia de un laboratorio físicamente, sin embargo, esta sustitución desencadena diferentes relaciones entre los actores. En este trabajo se pretende mostrar como es que un laboratorio simulado, podría contribuir a la incorporación a sistemas escolares concretos de diseños de aprendizaje basados en las prácticas sociales de modelación. Se da evidencia de cómo se desarrollan acciones e interacciones colaborativas alrededor del laboratorio virtual.
Resumo:
En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.
Resumo:
Que justo en medio de la calzada de la Avenue des Martyrs de Douz, en los límites del Sahara tunecino, donde vi un papel que me llamó la atención. Estaba arrugado en una bola y por unos instantes dudé en agacharme a recogerlo. Pero los trazos intermitentes entre las arrugas me resultaban tan familiares que no pude evitar recoger del suelo lo que alguien había tirado, probablemente con rabia. Mi acto implicaría abrir una conversación sobre un tema incómodo y poco natural mientras uno está de vacaciones, toda una verdadera provocación. Sin embargo, no podía dejar escapar una ocasión como aquella. Vivía un fenómeno insólito que superaba los límites de imaginación. Así que me agaché y cogí del suelo aquel lío de papel.
Resumo:
La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.
Resumo:
A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.
Resumo:
Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.
Resumo:
La génesis de este artículo fue la experiencia realizada con (y por) nuestros alumnos para que conocieran el procedimiento seguido por Eratóstenes para medir el radio de la Tierra y lo repitiesen. Es decir, un primer y claro objetivo de la experiencia era que los alumnos aprendieran un método clásico e ilustrativo de la rigurosidad e ingenio científicos; sin embargo, también nos planteamos un segundo objetivo que, a nuestro entender, es mucho más interesante y formativo: ver cómo los alumnos eran capaces de investigar por su cuenta con unas pocas indicaciones, con el fin de conocerlos mejor y tratar de fomentar las capacidades especificas de cada uno.
Resumo:
Es bien claro que, paulatinamente, la prensa se está afianzando como instrumento didáctico, que su uso está abriendo posibilidades educativas muy dignas de ser consideradas. Pero no es menos cierto que la misma está infrautilizada. En todo caso, no es este el momento de analizar los distintos modelos y propuestas a las que nos podríamos referir. Aún más, todos sabemos que la prensa no está pensada como instrumento educativo en si mismo. Sin embargo, la gran versatilidad de este medio facilita su uso en cualquier área, nivel y materia.
Resumo:
En este artículo se muestra una forma de programar un evaluador de expresiones matemáticas en JAVA. El programa se construye paso a paso y se explican detalladamente las partes más importantes del mismo. El evaluador consta de dos partes o módulos, el primero se encarga de convertir la expresión digitada a notación postfija que es más sencilla para el computador; el segundo es el que evalúa la expresión que se obtuvo en un valor específico. Para poder comprender y reescribir este programa se necesita tener conocimientos básicos en la programación en JAVA, sin embargo, se explicará el uso de varias primitivas utilizadas y de algunos conceptos básicos de programación.
Resumo:
Este artículo se basa en que las nuevas tecnologías representan una alternativa para la enseñanza y el aprendizaje de las matemáticas; las calculadoras simples, las calculadoras gráficas y las computadoras han ido desplazando a la tiza y a la pizarra, pues los temas pueden ser mostrados con mayor dinamismo y agilidad. Sin embargo, un problema muy común entre los profesores es que cuentan con la tecnología para innovar, pero no saben como hacerlo, en el artículo se sugieren algunas formas de utilizar la tecnología para introducir el concepto de derivada, algunos modos de aproximarla y, por último, cómo obtener reglas generales.