259 resultados para Geometría descriptiva.
Resumo:
El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.
Resumo:
Os resultados apresentados referem-se à pesquisa sobre a transição Ensino Médio e Superior para as noções de Geometria Analítica. O referencial teórico da pesquisa é a Teoria Antropológica do Didático de Bosch e Chevallard (1999), a noção de quadro de Douady (1984), a noção de ponto de vista de Rogalski (1995, 2001) e a abordagem teórica em termos de níveis de conhecimento de Robert (1997). As análises das relações institucionais foram efetuadas por meio de documentos oficiais e livros didáticos e as relações pessoais por meio de macro avaliações. Os resultados encontrados mostram uma crescente preocupação institucional com a articulação dos ostensivos e não ostensivos associados às noções de Geometria Analítica e uma tendência em deixar o tratamento do espaço IR3 para Ensino Superior.
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.
Resumo:
En el presente trabajo se comparte una experiencia de aula que se realiza, utilizando el Origami, para introducir el trabajo con funciones cuadráticas, con estudiantes de la media académica. En el proceso de iniciación al cálculo, se estudió la relación entre el plegado de papel y la geometría, al desarmar un módulo cuadrado y analizar las cicatrices que quedan en él. Se relacionaron algunos elementos matemáticos presentes en el módulo, con los conceptos matemáticos que emergieron en las cicatrices y se analizaron algunas propiedades de los poliedros. Esto permitió el estudio de conceptos como rectas paralelas y perpendiculares, bisectrices y mediatrices y familias de poliedros, relacionando el área lateral de los poliedros con el tamaño del módulo y con el número de éstos, lo que llevó al estudio de familias de funciones, haciendo el tránsito por diferentes sistemas semióticos de representación y al interior de algunos de estos, llevando a los mismos estudiantes a que le asignaran significado y sentido a los conceptos estudiados, al poderlos manipular.
Resumo:
Nuestra propuesta, la cual es resultado de una investigación en proceso, se encuentra inserta en el nivel Medio Superior y es relativa a la Geometría Analítica, específicamente a la construcción de las cónicas. Se nutre del plegado de papel y del uso de un software de geometría dinámica (Cabri Geomètre II) como recursos didácticos. Su referencia teórica está basada en los niveles del razonamiento geométrico de Van Hiele. Caracterizamos, así, la construcción geométrica en tres momentos: la intuición a través del plegado de papel; la visualización vía un software de geometría dinámica como herramienta didáctica argumentativa; y por último formalizando las argumentaciones y conjeturas establecidas al analizar las cónicas vía la técnica del Debate Científico.
Resumo:
En este documento trataremos algunas consideraciones teóricas en que basamos un trabajo en proceso, un estudio comparativo acerca de las concepciones sobre la transformación lineal en contexto geométrico entre dos tipos de actores educativos (profesores y estudiantes de matemáticas de distintas zonas geográficas en México). Nuestra intención es discutir algunas ideas del marco teórico de la investigación, en relación a algunos modelos intuitivos relacionados con la transformación lineal en contexto geométrico, utilizando la teoría de Fischbein (1987, 1989) y el trabajo de Molina (2004).
Resumo:
En el trabajo se presenta una síntesis de la importancia que se atribuye a formar una cultura estadística en los ciudadanos, se caracterizan los programas de Matemática para décimo y duodécimo grado en Cuba, los que contemplan contenidos de Estadística Descriptiva y Probabilidades; así mismo, se valoran estos contenidos y se presenta una metodología encaminada a orientar a los profesores de la enseñanza media superior en lo referente a la organización y desarrollo del proceso de enseñanza-aprendizaje de la Estadística y las Probabilidades.
Resumo:
Tomando como inicio el contexto de la Matemática para su enseñanza, encontramos que existen múltiples relaciones entre ella y diferentes ramas del Arte. El tema que presentamos en este taller es ilimitado. Presentaremos algunos “matemáticos-escritores”, algunos autores del género “Matemática Recreativa” y otros ejemplos de famosos científicos que incursionaron en la Literatura o famosos literatos que incursionaron en la Matemática. En definitiva, se trata de mostrar, brevemente, algunos vínculos entre la Matemática y la Literatura, ya que estos textos pueden utilizarse como disparador para la introducción de nuevos contenidos.
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.
Resumo:
Esta experiencia, abordó la problemática relacionada con el aprendizaje y la enseñanza de la geometría y en particular, el proceso de conceptualización y formulación de definiciones de objetos geométricos como los poliedros. El propósito de esta experiencia en la línea de la metodología estudio de clase (MEC), es el de planificar y orientar una clase que favorezca en los estudiantes la construcción del concepto de poliedro, desde principios pedagógicos y didácticos pertinentes y válidos. Su pertinencia radica en la generación de ambientes de aprendizaje alternativos, los cuales privilegian la construcción de conocimiento desde la interacción, además se favorece el proceso de conceptualización tan importante en el desarrollo del pensamiento y las competencias matemáticas.
Resumo:
En este trabajo se presenta un análisis de los resultados obtenidos en el examen diagnóstico de matemáticas, aplicado a los alumnos de nuevo ingreso en el CECYT “Juan de Dios Bátiz Paredes”, del I.P.N. Este análisis se realiza considerando los resultados obtenidos en la aplicación del mismo, durante un período de tres años. Los reactivos del examen están elaborados considerando los temas y clasificación especificados en el plan de estudios de la Secundaria, según el Ceneval. En habilidad matemática podemos mencionar: sucesiones numéricas, patrones numéricos, series espaciales, patrones espaciales, problemas aritméticos y problemas de razonamiento. El examen está dividido en: aritmética, álgebra y geometría. También se evalúa conceptos y operaciones y resolución de problemas. El informe destaca los reactivos con mayores y menores porcentajes de aciertos, documentando el tipo de errores más comunes que incurren y su relación que guarda con la enseñanza de las matemáticas. A partir de los resultados obtenidos se plantean acciones para que los alumnos puedan afrontar con buenos resultados los cursos de matemáticas del bachillerato.
Resumo:
¿En qué pensamos cuando citamos a Gulliver? Seguro que en proporciones. El trabajo nos va a mostrar la riqueza que posee este libro en la relación de la matemática con otras disciplinas como es la literatura, o como la música entre otros temas. Todo el material para incorporar en las aulas es de tal magnitud que nos preguntaremos ¿por qué no lo usamos y lo aprovechamos con nuestros alumnos? Se propone tomar distintos párrafos del libro y trabajar las situaciones que se plantean con longitudes, perímetros, superficies, volúmenes, medidas no convencionales, sistemas de coordenadas, razones, figuras y cuerpos geométricos, relaciones trigonométricas para llevar al espacio áulico con nuestros alumnos dichas actividades, donde veremos la riqueza de esta obra literaria con nuestra asignatura y otras.
Resumo:
En éste artículo se presenta una propuesta para la enseñanza de los Teoremas Fundamentales del Cálculo por medio de la utilización del software Geogebra, éste software permite la visualización de cada uno de los teoremas fundamentales del cálculo, a través de la interpretación geométrica de la integral como función de área y la interpretación de la derivada como función de pendientes, posteriormente se relacionan los procesos inversos de integración y derivación.
Resumo:
El documento que se presenta a continuación, tiene como propósito fundamental realizar una propuesta frente a la enseñanza de las cónicas a un nivel introductorio, en los cursos de educación media e incluso en los programas de licenciatura de la Facultad de Ciencia y Tecnología de la Universidad Pedagógica Nacional, particularmente para ofrecer una alternativa al paso de las representaciones sintéticas y analíticas de las cónicas. La propuesta esta apoyada en una serie de actividades con el uso de herramientas computacionales (en particular el software geogebra).
Resumo:
En el presente trabajo se expone un manera novedosa para generar números irracionales a partir del concepto de cortadura relativo a una serie aritmética natural e infinita. Se enuncia un teorema respectivo.