22 resultados para SISTEMAS DE ENSEÑANZA
Resumo:
En Suiza existen tres niveles educativos: uno o dos cursos de clases preescolares. Cinco o seis cursos de escuela primaria. Cuatro o tres años de escuela secundaria inferior (fin de la escolaridad obligatoria). (En todos los casos, numerados del 1 al 9).
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.
Resumo:
Esta comunicación aporta información sobre cómo un experimento de enseñanza en un entorno tecnológico usando applets elaborados con el programa de geometría dinámica Geogebra, ayudó a estudiantes de bachillerato (17-18 años) a construir distintas aproximaciones al concepto de función primitiva. Los resultados muestran por una parte que los estudiantes fueron capaces de relacionar distintas ideas usando argumentos variados para asociar la gráfica de una función con la de una de sus primitivas; en estos argumentos subyace principalmente la relación de este concepto con el de derivada. Por otra parte las soluciones aportadas se apoyaron más en el pensamiento visual que en el analítico.
Resumo:
Se presenta una síntesis de una experiencia de aula llevada a cabo en el Colegio Alfonso López Pumarejo IED, en el marco de la semana de práctica de la Licenciatura en Matemáticas de la Universidad Pedagógica Nacional, para la cual se utilizó como herramienta, un material nominado Tabletas Algebraicas, con el objetivo de introducir a los estudiantes en el proceso de factorización de algunos polinomios a través de la relación entre el lenguaje geométrico y el algebraico, estudiando el significado geométrico de algunos productos notables en relación con la noción de área de figuras geométricas como cuadrados y rectángulos.
Resumo:
A través del taller se muestra la posibilidad del uso del programa computacional Cabri para el desarrollo del pensamiento variacional especialmente; mostrando el comportamiento general de cada una de las funciones trigonométricas en el plano cartesiano, graficándolas en el mismo plano haciendo una simulación de eje y sobre el mismo sistema coordenado.
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
Este trabajo tiene como objetivo dar argumentos en favor de la inclusión de los sistemas de álgebra computacional en el currículo de matemáticas desde el nivel medio de enseñanza hasta el nivel superior. Primero, se presentan algunos conceptos relativos al uso de estos sistemas en la educación. Después, se presentan varios ejemplos con el propósito de mostrar el poder de estos sistemas como auxiliares en la solución de problemas. Finalmente se hace una propuesta acerca de su uso en educación.
Resumo:
Durante muchos años en el sistema educativo se consideró el proceso de enseñanza aprendizaje de las matemáticas como una actividad ubicada en el aula, siendo el único espacio donde el que sabe, el profesor, dota de conocimientos al que aprende, el alumno. Este tipo de enseñanza, sin considerarla mala, trae como consecuencia que al enfrentar al estudiante a un problema real tenga dificultades para su solución. En este artículo se reporta parte de una investigación cuyo objetivo fue a entender el conocimiento que surge en la interacción entre dos contextos diferentes: uno el matemático y el otro el derivado de un área técnica en particular. Se describe el conocimiento de un grupo de enfoque relativo al campo conceptual de un sistema de ecuaciones lineales con dos incógnitas en el contexto del balance de materia. La aproximación cognitiva del campo conceptual de interés, se ha realizado sustentado en la Teoría de Campos Conceptuales de Vergnaud y se trabaja con la Matemática en el Contexto de las Ciencias como marco de referencia.
Resumo:
En este trabajo presentamos una caracterización del currículo matemático de nivel medio en el Estado de Yucatán, en tanto su estructura y la orientación de sus componentes con el fin de dar indicios sobre la planificación, qué matemáticas estudiar y cómo hacerlo. Este estudio se basó, entonces, en un análisis de su evolución y de la identificación de las incongruencias e inconsistencias, en cuanto a aspectos como organización y estructura que se plantean en los planes y programas de matemáticas de bachillerato.
Resumo:
Los procedimientos, gráficos, operaciones y procesos en las matemáticas hacen necesaria la implementación de recursos didácticos que permitan facilitar el aprendizaje de los contenidos de ella. Por esto son indispensables en la enseñanza de las matemáticas como instrumentos de apoyo que favorecen el proceso de matematización y representación de ideas matemáticas. Esto es una gran dificultad para el niño con discapacidad visual ya que en la educación matemática hacen falta materiales didácticos adaptados lo cuales mejoren el ritmo de trabajo y rendimiento a la hora de aprender haciendo uso de una Didáctica Especial de la Matemática para ciegos que permita una adecuación de materiales pedagógicos e instrumental de trabajo para esta población.
Resumo:
En el artículo se exponen dos métodos de resolución de inecuaciones. Se comparan desde varios puntos de vista y se comentan algunos aspectos del trabajo realizado a partir de 1983 en la enseñanza de dicho tópico en la facultad de ciencias de la Universidad Central de Venezuela.
Resumo:
El objetivo es presentar el teorema de la función inversa y algunos de sus principales corolarios. Este teorema es central en el estudio del cálculo en varias variables, y tradicionalmente su presentación se hace de manera negligente en cursos que tienden a dar poco énfasis al análisis, lo cual puede no ser conveniente para estudiantes de las carreras de enseñanza de las matemáticas, matemática pura y aplicada, y carreras afines.
Resumo:
La principal intención de este trabajo es motivar a los docentes e investigadores en educación matemática a integrar en los procesos de enseñanza y aprendizaje de las matemáticas relacionados con el concepto de función, el desarrollo histórico de dicho objeto de estudio. Como segundo objetivo se desea sugerir diferentes actividades que se pueden utilizar para estudiar el concepto de función en los varios niveles de la educación formal. Este artículo se divide en tres secciones. La primera sección es una revisión del desarrollo del concepto de función a través de la historia. La segunda sección es un breve estudio de los tipos de definición existentes y las diferentes formas de representar funciones. La tercera sección es un recuento de actividades o situaciones de interés, con la intención de indicar facetas interesantes a la hora de estudiar el concepto de función.
Resumo:
Este trabajo describe una experiencia realizada en un curso de análisis numérico dictado en la facultad de Ciencias Exactas y Naturales de la Universidad de Mar del Plata (Argentina). La posibilidad de dictar clases en un laboratorio que cuenta con un número de computadoras que es apenas superado por la cantidad de alumnos permite promover un ambiente interactivo, de reflexión y experiencias que dan lugar a un verdadero aprendizaje significativo. En particular el programa Derive, conforma un importante recurso para mejorar las estrategias didácticas que sin dudas posibilitan lograr los objetivos propuestos.
Resumo:
Se proponen actividades utilizando el geoespacio, el cual es un material que el alumno manipulará para aprender en forma práctica, y así se consolidará el aprendizaje de las matemáticas, en especial de la geometría. Por medio de dibujos en isométrico se hará la representación plana de los sólidos que se formen en el geoespacio. Pescarini y Puig Adam han presentado una modificación del geoplano para hacer posible el estudio del espacio de tres dimensiones; lo han llamado geoespacio y sus posibilidades son sensiblemente menores. Consta de tres paredes de tela metálica fina formando un triedro. Con trozos de alambre se materializan las figuras del espacio, particularmente las poliédricas. En este trabajo se presenta al geoespacio como una estructura cúbica que lleva un sistema de argollas dispuestas en las aristas, donde podrán colocarse ligas de colores para formar sólidos y presentar diversas situaciones didácticas.