31 resultados para Organizadores del currículo
Resumo:
Conocer la historia de la propia profesión es uno de los signos de identidad que caracteriza a los grupos sociales. Los educadores matemáticos españoles están comenzando a considerarse como grupo profesional diferenciado, con necesidades formativas propias y unas condiciones de trabajo específicas bien definidas, que necesitan de infraestructura adecuada. La caracterización de esta profesión es resultado de un proceso lento de profundización teórica e implementación práctica llevado a cabo a lo largo de muchos años, con avances y retrocesos, e interconectado con los recientes cambios sociales y políticos ocurridos en España. Por ello, constituir una comunidad de educadores matemáticos, formada por profesionales autónomos y críticos, socialmente eficaces, es una tarea lo suficentemente importante como para necesitar el esfuerzo de todos.
Resumo:
En este trabajo presentamos una caracterización del currículo matemático de nivel medio en el Estado de Yucatán, en tanto su estructura y la orientación de sus componentes con el fin de dar indicios sobre la planificación, qué matemáticas estudiar y cómo hacerlo. Este estudio se basó, entonces, en un análisis de su evolución y de la identificación de las incongruencias e inconsistencias, en cuanto a aspectos como organización y estructura que se plantean en los planes y programas de matemáticas de bachillerato.
Resumo:
El Programa ‘Paquetes Didácticos para los cursos de Matemáticas’ de la Academia Institucional de Matemáticas del Nivel Medio Superior (AIM-NMS-IPN) en colaboración con la Dirección de Tecnología Educativa del Instituto Politécnico Nacional, desarrollaron el Paquete Didáctico de Álgebra para el Nivel Medio Superior que consiste en un libro y un disco compacto con software especializado. El paquete didáctico tiene como propósito dotar al profesor y al estudiante de materiales de calidad, elaborados usando el conocimiento generado por las investigaciones, es un conjunto de materiales que concretan operativamente los cuatro organizadores del currículo: objetivos, contenidos, metodología y evaluación. En particular, las estrategias didácticas y metodológicas, los conocimientos matemáticos y los elementos teóricos para ampliar la cultura matemática de los estudiantes. Estos materiales pretenden apoyar las clases presenciales con materiales innovadores que permitan lograr aprendizaje significativo en los alumnos que cursan esta materia. En este trabajo se presenta un informe de los resultados del cuestionario de opinión aplicado a los alumnos de los grupos piloto con el objetivo de conocer sus impresiones al utilizar este tipo de materiales, así como las mejoras que propongan, todo esto para lograr que el Paquete Didáctico responda realmente a las necesidades de los alumnos.
Resumo:
La presente propuesta es una aproximación reflexiva y critica de las prácticas evaluativas que se vienen desarrollando en la enseñanza básica y media en las instituciones de carácter privado de la ciudad de Cali, sustentada desde nuestra propia experiencia como docentes en ejercicio y estudiantes de último semestre en Licenciatura de Matemáticas y Física de la Universidad del Valle, y apoyada en el análisis de unas actividades piloto de intervención y evaluación matemática, en torno a diferentes nociones y conceptos relacionados con la estructura conceptual del tópico de proporción y proporcionalidad en los grados de séptimo de educación básica y décimo de educación media que se realizaron a fin de plantear una serie de interrogantes cruciales en torno a la evaluación, dado su carácter organizador, dinamizador y potencializador del currículo. Esta propuesta se apoyará en el marco metodológico de los organizadores del currículo, donde la evaluación es un eje fundamental en el análisis didáctico que permite la articulación y organización de un currículo significativo para los intereses de los educandos.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
Se presentan las ideas centrales y las técnicas del análisis de contenido que corresponden al módulo 2 de MAD. El módulo 2 de MAD 2 tiene como finalidad contribuir al conocimiento teórico y técnico de los profesores en formación sobre el análisis de contenido. Esta finalidad se concreta por medio de cuatro actividades en las que los profesores en formación tienen la oportunidad de dar sentido y utilizar, para el análisis de un tema de las matemáticas escolares, los cuatro organizadores del currículo que acabamos de mencionar. Además, tienen la oportunidad de recolectar y organizar toda la información producida para estos organizadores del currículo en un balance final.
Resumo:
Se presentan las ideas centrales y las técnicas del análisis de contenido que corresponden al módulo 2 de MAD. El módulo 2 de MAD 2 tiene como finalidad contribuir al conocimiento teórico y técnico de los profesores en formación sobre el análisis de contenido. Esta finalidad se concreta por medio de cuatro actividades en las que los profesores en formación tienen la oportunidad de dar sentido y utilizar, para el análisis de un tema de las matemáticas escolares, los cuatro organizadores del currículo que acabamos de mencionar. Además, tienen la oportunidad de recolectar y organizar toda la información producida para estos organizadores del currículo en un balance final.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
En el presente trabajo nos interesa principalmente determinar qué concepciones sobre el infinito han desarrollado estudiantes de último año de secundaria y estudiantes universitarios de primer año. Aunque este concepto no aparece como un contenido específico del currículo de matemáticas, sobre él se desarrollan diferentes concepciones en escenarios no escolares que de una u otra manera afectan la construcción de conceptos matemáticos relacionados con él. Además, nos interesa confrontar las ideas que surgen cuando se habla de infinito en lo grande e infinito en lo pequeño, ya que aunque se trata de la construcción de un mismo concepto sus concepciones emergen de manera diferente en la mente de los individuos (Núñez, 1997). Lo que se puede justificar considerando que es más fácil comprender el infinito en lo grande como un proceso que continua sin parar y que no tiene fin, que el infinito en lo pequeño, en donde a pesar de conservarse el hecho de un proceso sin fin, aparece una nueva situación que sugiere que dicho proceso tiene un límite.
Resumo:
En este trabajo exploramos la problemática de la enseñanza y el aprendizaje del análisis fenomenológico en un programa de máster de formación de profesores de matemáticas de secundaria en ejercicio basado en el modelo del análisis didáctico. Con base en la descripción de los aspectos teóricos y técnicos de este organizador del currículo, establecemos una serie de acciones que permiten describir la actuación de los profesores en formación en sus producciones escritas. Identificamos y caracterizamos la dificultad manifestada por los profesores en formación sobre las principales ideas que configuran este procedimiento.
Resumo:
El presente trabajo se ubica en la línea de educación estocástica en lo concerniente al conocimiento profesional del profesor; se pretende, explorar los conocimientos del profesor para la enseñanza de la probabilidad en la educación media colombiana. Para ello, se utiliza un análisis del discurso sobre las ideas expuestas por diversos autores en la literatura y el enfoque cualitativo de investigación mediante un estudio de casos. Se espera ampliar el panorama referente a los conocimientos necesarios para orientar el tema de probabilidad dentro del currículo de matemáticas en la educación de nivel pre universitario.
Resumo:
En este artículo se presentan una serie de experiencias sobre cómo aprovechar el entorno a la hora de tratar ciertos contenidos del currículo. Estas actividades están organizadas en función de la proximidad al aula: trabajaremos tanto en el entorno más próximo, el patio del instituto, como en uno más alejado, el ambiente rural. Las actividades contienen aspectos interdisciplinares que tratan de mostrar la parte práctica y utilitaria de las matemáticas, trabajando especialmente los contenidos procedimentales, así como ser un material didáctico útil para la atención a la diversidad. Las actividades propuestas aparecen recogidas en un cuaderno de campo de forma que los alumnos dispongan de un material donde reflejar de una forma ordenada y precisa los resultados obtenidos después de realizar cada una de ellas.
Resumo:
Argumentamos sobre el uso de la papiroflexia como recurso didáctico en el aula de matemáticas. A través de diversas investigaciones sobre las características que un buen material didáctico debe tener se avala la importancia de la papiroflexia en la enseñanza y aprendizaje de las matemáticas. Proporcionamos unas sugerencias didácticas, que invitan a la reflexión sobre el papel de la geometría dentro del currículo. Por último, consideramos el valor de la papiroflexia como estímulo de distintas facultades intelectuales y físicas.