11 resultados para overlap
em Duke University
Resumo:
INTRODUCTION: The characterization of urinary calculi using noninvasive methods has the potential to affect clinical management. CT remains the gold standard for diagnosis of urinary calculi, but has not reliably differentiated varying stone compositions. Dual-energy CT (DECT) has emerged as a technology to improve CT characterization of anatomic structures. This study aims to assess the ability of DECT to accurately discriminate between different types of urinary calculi in an in vitro model using novel postimage acquisition data processing techniques. METHODS: Fifty urinary calculi were assessed, of which 44 had >or=60% composition of one component. DECT was performed utilizing 64-slice multidetector CT. The attenuation profiles of the lower-energy (DECT-Low) and higher-energy (DECT-High) datasets were used to investigate whether differences could be seen between different stone compositions. RESULTS: Postimage acquisition processing allowed for identification of the main different chemical compositions of urinary calculi: brushite, calcium oxalate-calcium phosphate, struvite, cystine, and uric acid. Statistical analysis demonstrated that this processing identified all stone compositions without obvious graphical overlap. CONCLUSION: Dual-energy multidetector CT with postprocessing techniques allows for accurate discrimination among the main different subtypes of urinary calculi in an in vitro model. The ability to better detect stone composition may have implications in determining the optimum clinical treatment modality for urinary calculi from noninvasive, preprocedure radiological assessment.
Resumo:
The chemical interplay of nitrogen oxides (NO's) with hemoglobin (Hb) has attracted considerable recent attention because of its potential significance in the mechanism of NO-related vasoactivity regulated by Hb. An important theme of this interplay-redox coupling in adducts of heme iron and NO's-has sparked renewed interest in fundamental studies of FeNO(x) coordination complexes. In this Article, we report combined UV-vis and comprehensive electron paramagnetic resonance (EPR) spectroscopic studies that address intriguing questions raised in recent studies of the structure and affinity of the nitrite ligand in complexes with Fe(III) in methemoglobin (metHb). EPR spectra of metHb/NO(2)(-) are found to exhibit a characteristic doubling in their sharper spectral features. Comparative EPR measurements at X- and S-band frequencies, and in D(2)O versus H(2)O, argue against the assignment of this splitting as hyperfine structure. Correlated changes in the EPR spectra with pH enable complete assignment of the spectrum as deriving from the overlap of two low-spin species with g values of 3.018, 2.122, 1.45 and 2.870, 2.304, 1.45 (values for samples at 20 K and pH 7.4 in phosphate-buffered saline). These g values are typical of g values found for other heme proteins with N-coordinated ligands in the binding pocket and are thus suggestive of N-nitro versus O-nitrito coordination. The positions and shapes of the spectral lines vary only slightly with temperature until motional averaging ensues at approximately 150 K. The pattern of motional averaging in the variable-temperature EPR spectra and EPR studies of Fe(III)NO(2)(-)/Fe(II)NO hybrids suggest that one of two species is present in both of the alpha and beta subunits, while the other is exclusive to the beta subunit. Our results also reconfirm that the affinity of nitrite for metHb is of millimolar magnitude, thereby making a direct role for nitrite in physiological hypoxic vasodilation difficult to justify.
Resumo:
BACKGROUND: The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. CONCLUSIONS/SIGNIFICANCE: Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.
Resumo:
We determined estimated incidence of and risk factors for community-associated Clostridium difficile infection (CA-CDI) among patients treated at 6 North Carolina hospitals. CA-CDI case-patients were defined as adults (>18 years of age) with a positive stool test result for C. difficile toxin and no hospitalization within the prior 8 weeks. CA-CDI incidence was 21 and 46 per 100,000 person-years in Veterans Affairs (VA) outpatients and Durham County populations, respectively. VA case-patients were more likely than controls to have received antimicrobial drugs (adjusted odds ratio [aOR] 17.8, 95% confidence interval [CI] 6.6-48] and to have had a recent outpatient visit (aOR 5.1, 95% CI 1.5-17.9). County case-patients were more likely than controls to have received antimicrobial drugs (aOR 9.1, 95% CI 2.9-28.9), to have gastroesophageal reflux disease (aOR 11.2, 95% CI 1.9-64.2), and to have cardiac failure (aOR 3.8, 95% CI 1.1-13.7). Risk factors for CA-CDI overlap with those for healthcare-associated infection.
Resumo:
The distribution and movement of water can influence the state and dynamics of terrestrial and aquatic ecosystems through a diversity of mechanisms. These mechanisms can be organized into three general categories wherein water acts as (1) a resource or habitat for biota, (2) a vector for connectivity and exchange of energy, materials, and organisms, and (3) as an agent of geomorphic change and disturbance. These latter two roles are highlighted in current models, which emphasize hydrologic connectivity and geomorphic change as determinants of the spatial and temporal distributions of species and processes in river systems. Water availability, on the other hand, has received less attention as a driver of ecological pattern, despite the prevalence of intermittent streams, and strong potential for environmental change to alter the spatial extent of drying in many regions. Here we summarize long-term research from a Sonoran Desert watershed to illustrate how spatial patterns of ecosystem structure and functioning reflect shifts in the relative importance of different 'roles of water' across scales of drainage size. These roles are distributed and interact hierarchically in the landscape, and for the bulk of the drainage network it is the duration of water availability that represents the primary determinant of ecological processes. Only for the largest catchments, with the most permanent flow regimes, do flood-associated disturbances and hydrologic exchange emerge as important drivers of local dynamics. While desert basins represent an extreme case, the diversity of mechanisms by which the availability and flow of water influence ecosystem structure and functioning are general. Predicting how river ecosystems may respond to future environmental pressures will require clear understanding of how changes in the spatial extent and relative overlap of these different roles of water shape ecological patterns. © 2013 Sponseller et al.
Resumo:
Posttraumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contributions of the large-scale neural networks supporting cognition in PTSD is unknown. In the present functional MRI study, we employed independent-component analysis to examine the influence of the engagement of neural networks during the recall of personal memories in a PTSD group (15 participants) as compared to non-trauma-exposed healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to the controls during AM recall, including default-network subsystems and control networks, but group differences emerged in the spatial and temporal characteristics of these networks. First, we found spatial differences in the contributions of the anterior and posterior midline across the networks, and of the amygdala in particular, for the medial temporal subsystem of the default network. Second, we found temporal differences within the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that the spatial and temporal characteristics of the default and control networks potentially differ in a PTSD group versus healthy controls and contribute to altered recall of personal memory.
Resumo:
Remembering past events - or episodic retrieval - consists of several components. There is evidence that mental imagery plays an important role in retrieval and that the brain regions supporting imagery overlap with those supporting retrieval. An open issue is to what extent these regions support successful vs. unsuccessful imagery and retrieval processes. Previous studies that examined regional overlap between imagery and retrieval used uncontrolled memory conditions, such as autobiographical memory tasks, that cannot distinguish between successful and unsuccessful retrieval. A second issue is that fMRI studies that compared imagery and retrieval have used modality-aspecific cues that are likely to activate auditory and visual processing regions simultaneously. Thus, it is not clear to what extent identified brain regions support modality-specific or modality-independent imagery and retrieval processes. In the current fMRI study, we addressed this issue by comparing imagery to retrieval under controlled memory conditions in both auditory and visual modalities. We also obtained subjective measures of imagery quality allowing us to dissociate regions contributing to successful vs. unsuccessful imagery. Results indicated that auditory and visual regions contribute both to imagery and retrieval in a modality-specific fashion. In addition, we identified four sets of brain regions with distinct patterns of activity that contributed to imagery and retrieval in a modality-independent fashion. The first set of regions, including hippocampus, posterior cingulate cortex, medial prefrontal cortex and angular gyrus, showed a pattern common to imagery/retrieval and consistent with successful performance regardless of task. The second set of regions, including dorsal precuneus, anterior cingulate and dorsolateral prefrontal cortex, also showed a pattern common to imagery and retrieval, but consistent with unsuccessful performance during both tasks. Third, left ventrolateral prefrontal cortex showed an interaction between task and performance and was associated with successful imagery but unsuccessful retrieval. Finally, the fourth set of regions, including ventral precuneus, midcingulate cortex and supramarginal gyrus, showed the opposite interaction, supporting unsuccessful imagery, but successful retrieval performance. Results are discussed in relation to reconstructive, attentional, semantic memory, and working memory processes. This is the first study to separate the neural correlates of successful and unsuccessful performance for both imagery and retrieval and for both auditory and visual modalities.
Resumo:
© Institute of Mathematical Statistics, 2014.Motivated by recent findings in the field of consumer science, this paper evaluates the causal effect of debit cards on household consumption using population-based data from the Italy Survey on Household Income and Wealth (SHIW). Within the Rubin Causal Model, we focus on the estimand of population average treatment effect for the treated (PATT). We consider three existing estimators, based on regression, mixed matching and regression, propensity score weighting, and propose a new doubly-robust estimator. Semiparametric specification based on power series for the potential outcomes and the propensity score is adopted. Cross-validation is used to select the order of the power series. We conduct a simulation study to compare the performance of the estimators. The key assumptions, overlap and unconfoundedness, are systematically assessed and validated in the application. Our empirical results suggest statistically significant positive effects of debit cards on the monthly household spending in Italy.
Resumo:
© 2014 The Authors.Caenorhabditis elegans larvae reversibly arrest development in the first larval stage in response to starvation (L1 arrest or L1 diapause). Insulin-like signaling is a critical regulator of L1 arrest. However, the C. elegans genome encodes 40 insulin-like peptides, and it is unknown which peptides participate in nutritional control of L1 development. Work in other contexts has revealed that insulin-like genes can promote development ("agonists") or developmental arrest ("antagonists"), suggesting that such agonists promote L1 development in response to feeding. We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified thirteen candidate agonists and eight candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (. daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists is largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in control of L1 development. Transcriptional regulation of candidate agonists is most significant in the intestine, as if internal nutrient status is a more important influence on transcription than sensory perception. Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 developmental dynamics, though simultaneous disruption of ins-4 and daf-28 increases survival of L1 arrest. Furthermore, overexpression of ins-4, ins-6 or daf-28 alone decreases survival and promotes cell division during starvation. These results suggest extensive functional overlap among insulin-like genes in nutritional control of L1 development while highlighting the role of ins-4, daf-28 and to a lesser extent ins-6.
Resumo:
Idioms of distress communicate suffering via reference to shared ethnopsychologies, and better understanding of idioms of distress can contribute to effective clinical and public health communication. This systematic review is a qualitative synthesis of "thinking too much" idioms globally, to determine their applicability and variability across cultures. We searched eight databases and retained publications if they included empirical quantitative, qualitative, or mixed-methods research regarding a "thinking too much" idiom and were in English. In total, 138 publications from 1979 to 2014 met inclusion criteria. We examined the descriptive epidemiology, phenomenology, etiology, and course of "thinking too much" idioms and compared them to psychiatric constructs. "Thinking too much" idioms typically reference ruminative, intrusive, and anxious thoughts and result in a range of perceived complications, physical and mental illnesses, or even death. These idioms appear to have variable overlap with common psychiatric constructs, including depression, anxiety, and PTSD. However, "thinking too much" idioms reflect aspects of experience, distress, and social positioning not captured by psychiatric diagnoses and often show wide within-cultural variation, in addition to between-cultural differences. Taken together, these findings suggest that "thinking too much" should not be interpreted as a gloss for psychiatric disorder nor assumed to be a unitary symptom or syndrome within a culture. We suggest five key ways in which engagement with "thinking too much" idioms can improve global mental health research and interventions: it (1) incorporates a key idiom of distress into measurement and screening to improve validity of efforts at identifying those in need of services and tracking treatment outcomes; (2) facilitates exploration of ethnopsychology in order to bolster cultural appropriateness of interventions; (3) strengthens public health communication to encourage engagement in treatment; (4) reduces stigma by enhancing understanding, promoting treatment-seeking, and avoiding unintentionally contributing to stigmatization; and (5) identifies a key locally salient treatment target.
Resumo:
X-ray mammography has been the gold standard for breast imaging for decades, despite the significant limitations posed by the two dimensional (2D) image acquisitions. Difficulty in diagnosing lesions close to the chest wall and axilla, high amount of structural overlap and patient discomfort due to compression are only some of these limitations. To overcome these drawbacks, three dimensional (3D) breast imaging modalities have been developed including dual modality single photon emission computed tomography (SPECT) and computed tomography (CT) systems. This thesis focuses on the development and integration of the next generation of such a device for dedicated breast imaging. The goals of this dissertation work are to: [1] understand and characterize any effects of fully 3-D trajectories on reconstructed image scatter correction, absorbed dose and Hounsifeld Unit accuracy, and [2] design, develop and implement the fully flexible, third generation hybrid SPECT-CT system capable of traversing complex 3D orbits about a pendant breast volume, without interference from the other. Such a system would overcome artifacts resulting from incompletely sampled divergent cone beam imaging schemes and allow imaging closer to the chest wall, which other systems currently under research and development elsewhere cannot achieve.
The dependence of x-ray scatter radiation on object shape, size, material composition and the CT acquisition trajectory, was investigated with a well-established beam stop array (BSA) scatter correction method. While the 2D scatter to primary ratio (SPR) was the main metric used to characterize total system scatter, a new metric called ‘normalized scatter contribution’ was developed to compare the results of scatter correction on 3D reconstructed volumes. Scatter estimation studies were undertaken with a sinusoidal saddle (±15° polar tilt) orbit and a traditional circular (AZOR) orbit. Clinical studies to acquire data for scatter correction were used to evaluate the 2D SPR on a small set of patients scanned with the AZOR orbit. Clinical SPR results showed clear dependence of scatter on breast composition and glandular tissue distribution, otherwise consistent with the overall phantom-based size and density measurements. Additionally, SPR dependence was also observed on the acquisition trajectory where 2D scatter increased with an increase in the polar tilt angle of the system.
The dose delivered by any imaging system is of primary importance from the patient’s point of view, and therefore trajectory related differences in the dose distribution in a target volume were evaluated. Monte Carlo simulations as well as physical measurements using radiochromic film were undertaken using saddle and AZOR orbits. Results illustrated that both orbits deliver comparable dose to the target volume, and only slightly differ in distribution within the volume. Simulations and measurements showed similar results, and all measured dose values were within the standard screening mammography-specific, 6 mGy dose limit, which is used as a benchmark for dose comparisons.
Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is very important, especially when using non-traditional trajectories. Uniform phantoms filled with various uniform density fluids were used to investigate differences in HU accuracy between saddle and AZOR orbits. Results illustrate the considerably better performance of the saddle orbit, especially close to the chest and nipple region of what would clinically be a pedant breast volume. The AZOR orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values in reconstructed volumes.
Finally, the third generation, fully-suspended SPECT-CT system was designed in and developed in our lab. A novel mechanical method using a linear motor was developed for tilting the CT system. A new x-ray source and a custom made 40 x 30 cm2 detector were integrated on to this system. The SPECT system was nested, in the center of the gantry, orthogonal to the CT source-detector pair. The SPECT system tilts on a goniometer, and the newly developed CT tilting mechanism allows ±15° maximum polar tilting of the CT system. The entire gantry is mounted on a rotation stage, allowing complex arbitrary trajectories for each system, without interference from the other, while having a common field of view. This hybrid system shows potential to be used clinically as a diagnostic tool for dedicated breast imaging.