7 resultados para nanoscale
em Duke University
Resumo:
The authors explore nanoscale sensor processor (nSP) architectures. Their design includes a simple accumulator-based instruction-set architecture, sensors, limited memory, and instruction-fused sensing. Using nSP technology based on optical resonance energy transfer logic helps them decrease the design's size; their smallest design is about the size of the largest-known virus. © 2006 IEEE.
Resumo:
The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.
Resumo:
Exact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength.
Resumo:
Metal nanoparticles (NPs) respond to electromagnetic waves by creating surface plasmons (SPs), which are localized, collective oscillations of conduction electrons on the NP surface. When interparticle distances are small, SPs generated in neighboring NPs can couple to one another, creating intense fields. The coupled particles can then act as optical antennae capturing and refocusing light between them. Furthermore, a molecule linking such NPs can be affected by these interactions as well. Here, we show that by using an appropriate, highly conjugated multiporphyrin chromophoric wire to couple gold NP arrays, plasmons can be used to control electrical properties. In particular, we demonstrate that the magnitude of the observed photoconductivity of covalently interconnected plasmon-coupled NPs can be tuned independently of the optical characteristics of the molecule-a result that has significant implications for future nanoscale optoelectronic devices.
Resumo:
Multivalency is the increase in avidity resulting from the simultaneous interaction of multiple ligands with multiple receptors. This phenomenon, seen in antibody-antigen and virus-cell membrane interactions, is useful in designing bioinspired materials for targeted delivery of drugs or imaging agents. While increased avidity offered by multivalent targeting is attractive, it can also promote nonspecific receptor interaction in nontarget tissues, reducing the effectiveness of multivalent targeting. Here, we present a thermal targeting strategy--dynamic affinity modulation (DAM)--using elastin-like polypeptide diblock copolymers (ELP(BC)s) that self-assemble from a low-affinity to high-avidity state by a tunable thermal "switch", thereby restricting activity to the desired site of action. We used an in vitro cell binding assay to investigate the effect of the thermally triggered self-assembly of these ELP(BC)s on their receptor-mediated binding and cellular uptake. The data presented herein show that (1) ligand presentation does not disrupt ELP(BC) self-assembly; (2) both multivalent ligand presentation and upregulated receptor expression are needed for receptor-mediated interaction; (3) increased size of the hydrophobic segment of the block copolymer promotes multivalent interaction with membrane receptors, potentially due to changes in the nanoscale architecture of the micelle; and (4) nanoscale presentation of the ligand is important, as presentation of the ligand by micrometer-sized aggregates of an ELP showed a low level of binding/uptake by receptor-positive cells compared to its presentation on the corona of a micelle. These data validate the concept of thermally triggered DAM and provide rational design parameters for future applications of this technology for targeted drug delivery.
Resumo:
Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a "smart" multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics.
Resumo:
The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.