3 resultados para modified simulated body fluid (m-SBF)

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To use a unique multicomponent administrative data set assembled at a large academic teaching hospital to examine the risk of percutaneous blood and body fluid (BBF) exposures occurring in operating rooms. DESIGN A 10-year retrospective cohort design. SETTING A single large academic teaching hospital. PARTICIPANTS All surgical procedures (n=333,073) performed in 2001-2010 as well as 2,113 reported BBF exposures were analyzed. METHODS Crude exposure rates were calculated; Poisson regression was used to analyze risk factors and account for procedure duration. BBF exposures involving suture needles were examined separately from those involving other device types to examine possible differences in risk factors. RESULTS The overall rate of reported BBF exposures was 6.3 per 1,000 surgical procedures (2.9 per 1,000 surgical hours). BBF exposure rates increased with estimated patient blood loss (17.7 exposures per 1,000 procedures with 501-1,000 cc blood loss and 26.4 exposures per 1,000 procedures with >1,000 cc blood loss), number of personnel working in the surgical field during the procedure (34.4 exposures per 1,000 procedures having ≥15 personnel ever in the field), and procedure duration (14.3 exposures per 1,000 procedures lasting 4 to <6 hours, 27.1 exposures per 1,000 procedures lasting ≥6 hours). Regression results showed associations were generally stronger for suture needle-related exposures. CONCLUSIONS Results largely support other studies found in the literature. However, additional research should investigate differences in risk factors for BBF exposures associated with suture needles and those associated with all other device types. Infect. Control Hosp. Epidemiol. 2015;37(1):80-87.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: Long-term intraocular pressure reduction by glaucoma drainage devices (GDDs) is often limited by the fibrotic capsule that forms around them. Prior work demonstrates that modifying a GDD with a porous membrane promotes a vascularized and more permeable capsule. This work examines the in vitro fluid dynamics of the Ahmed valve after enclosing the outflow tract with a porous membrane of expanded polytetrafluoroethylene (ePTFE). MATERIALS AND METHODS: The control and modified Ahmed implants (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) were submerged in saline and gelatin and perfused in a system that monitored flow (Q) and pressure (P). Flow rates of 1-50 μl/min were applied and steady state pressure recorded. Resistance was calculated by dividing pressure by flow. RESULTS: Modifying the Ahmed valve implant outflow with expanded ePTFE increased pressure and resistance. Pressure at a flow of 2 μl/min was increased in the PRIME-Ahmed (11.6 ± 1.5 mm Hg) relative to the control implant (6.5 ± 1.2 mm Hg). Resistance at a flow of 2 μl/min was increased in the PRIME-Ahmed (5.8 ± 0.8 mm Hg/μl/min) when compared to the control implant (3.2 ± 0.6 mm Hg/μl/min). CONCLUSIONS: Modifying the outflow tract of the Ahmed valve with a porous membrane adds resistance that decreases with increasing flow. The Ahmed valve implant behaves as a variable resistor. It is partially open at low pressures and provides reduced resistance at physiologic flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.