8 resultados para forced
em Duke University
Resumo:
Loss of PTEN and activation of phosphoinositide 3-kinase are commonly observed in advanced prostate cancer. Inhibition of mammalian target of rapamycin (mTOR), a downstream target of phosphoinositide 3-kinase signaling, results in cell cycle arrest and apoptosis in multiple in vitro and in vivo models of prostate cancer. However, single-agent use of mTOR inhibition has limited clinical success, and the identification of molecular events mitigating tumor response to mTOR inhibition remains a critical question. Here, using genetically engineered human prostate epithelial cells (PrEC), we show that MYC, a frequent target of genetic gain in prostate cancers, abrogates sensitivity to rapamycin by decreasing rapamycin-induced cytostasis and autophagy. Analysis of MYC and the mTOR pathway in human prostate tumors and PrEC showed selective increased expression of eukaryotic initiation factor 4E-binding protein 1 (4EBP1) with gain in MYC copy number or forced MYC expression, respectively. We have also found that MYC binds to regulatory regions of the 4EBP1 gene. Suppression of 4EBP1 expression resulted in resensitization of MYC-expressing PrEC to rapamycin and increased autophagy. Taken together, our findings suggest that MYC expression abrogates sensitivity to rapamycin through increased expression of 4EBP1 and reduced autophagy.
Resumo:
The paper investigates stochastic processes forced by independent and identically distributed jumps occurring according to a Poisson process. The impact of different distributions of the jump amplitudes are analyzed for processes with linear drift. Exact expressions of the probability density functions are derived when jump amplitudes are distributed as exponential, gamma, and mixture of exponential distributions for both natural and reflecting boundary conditions. The mean level-crossing properties are studied in relation to the different jump amplitudes. As an example of application of the previous theoretical derivations, the role of different rainfall-depth distributions on an existing stochastic soil water balance model is analyzed. It is shown how the shape of distribution of daily rainfall depths plays a more relevant role on the soil moisture probability distribution as the rainfall frequency decreases, as predicted by future climatic scenarios. © 2010 The American Physical Society.
Resumo:
Many consumer durable retailers often do not advertise their prices and instead ask consumers to call them for prices. It is easy to see that this practice increases the consumers' cost of learning the prices of products they are considering, yet firms commonly use such practices. Not advertising prices may reduce the firm's advertising costs, but the strategic effects of doing so are not clear. Our objective is to examine the strategic effects of this practice. In particular, how does making price discovery more difficult for consumers affect competing retailers' price, service decisions, and profits? We develop a model in which a manufacturer sells its product through a high-service retailer and a low-service retailer. Consumers can purchase the retail service at the high-end retailer and purchase the product at the competing low-end retailer. Therefore, the high-end retailer faces a free-riding problem. A retailer first chooses its optimal service levels. Then, it chooses its optimal price levels. Finally, a retailer decides whether to advertise its prices. The model results in four structures: (1) both retailers advertise prices, (2) only the low-service retailer advertises price, (3) only the high-service retailer advertises price, and (4) neither retailer advertises price. We find that when a retailer does not advertise its price and makes price discovery more difficult for consumers, the competition between the retailers is less intense. However, the retailer is forced to charge a lower price. In addition, if the competing retailer does advertise its prices, then the competing retailer enjoys higher profit margins. We identify conditions under which each of the above four structures is an equilibrium and show that a low-service retailer not advertising its price is a more likely outcome than a high-service retailer doing so. We then solve the manufacturer's problem and find that there are several instances when a retailer's advertising decisions are different from what the manufacturer would want. We describe the nature of this channel coordination problem and identify some solutions. © 2010 INFORMS.
Resumo:
The highest rates of fetal alcohol syndrome worldwide can be found in South Africa. Particularly in impoverished townships in the Western Cape, pregnant women live in environments where alcohol intake during pregnancy has become normalized and interpersonal violence (IPV) is reported at high rates. For the current study we sought to examine how pregnancy, for both men and women, is related to alcohol use behaviors and IPV. We surveyed 2,120 men and women attending drinking establishments in a township located in the Western Cape of South Africa. Among women 13.3% reported being pregnant, and among men 12.0% reported their partner pregnant. For pregnant women, 61% reported attending the bar that evening to drink alcohol and 26% reported both alcohol use and currently experiencing IPV. Daily or almost daily binge drinking was reported twice as often among pregnant women than non-pregnant women (8.4% vs. 4.2%). Men with pregnant partners reported the highest rates of hitting sex partners, forcing a partner to have sex, and being forced to have sex. High rates of alcohol frequency, consumption, binge drinking, consumption and binge drinking were reported across the entire sample. In general, experiencing and perpetrating IPV were associated with alcohol use among all participants except for men with pregnant partners. Alcohol use among pregnant women attending shebeens is alarmingly high. Moreover, alcohol use appears to be an important factor in understanding the relationship between IPV and pregnancy. Intensive, targeted, and effective interventions for both men and women are urgently needed to address high rates of drinking alcohol among pregnant women who attend drinking establishments.
Resumo:
Despite occasional trips to the ground and feeding in trees whose canopies touched the river, mantled howling monkeys were never seen to drink from any ground water. Drinking from arboreal cisterns was observed, but only during the wet season (meteorologically the less stressful season but phenologically the more stressful season). The lack of sufficient new leaves during the wet season forced the howlers to ingest more mature leaves which contained significantly less water. To compensate for the lowered amount of water in their food, the monkeys utilized arboreal water cisterns. The cisterns dried up during the dry season, but the howlers maintained their water balance by altering their time of actiivity and selecting a diet comprised largely of succulent new leaves. The effect of plant-produced secondary compounds on drinking also was discussed.
Resumo:
On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.
A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.
An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.
Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.
Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.
A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT Phantom
In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.
Resumo:
© 2015 Society for Industrial and Applied Mathematics.We consider parabolic PDEs with randomly switching boundary conditions. In order to analyze these random PDEs, we consider more general stochastic hybrid systems and prove convergence to, and properties of, a stationary distribution. Applying these general results to the heat equation with randomly switching boundary conditions, we find explicit formulae for various statistics of the solution and obtain almost sure results about its regularity and structure. These results are of particular interest for biological applications as well as for their significant departure from behavior seen in PDEs forced by disparate Gaussian noise. Our general results also have applications to other types of stochastic hybrid systems, such as ODEs with randomly switching right-hand sides.
Resumo:
The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.