8 resultados para anthropological genetics

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Too little information is available on Sri Lanka’s current capacity to provide community genetic services—antenatal genetic services in particular—to understand whether building that capacity could further improve and reduce disparity in maternal and child health. This qualitative research project seeks to gather information on congenital disorders, routine antenatal care, and the current state of antenatal screening testing services within that routine antenatal to assess the feasibility of and the need for scaling up antenatal genetics services in Sri Lanka. Methods: Nineteen key informant (KI) interviews were conducted with stakeholders in antenatal care and genetic services. Seven focus group discussions were held with a total of 56 Public Health Midwives (PHMs), the health workers responsible for antenatal care at the field level. Transcripts for all interviews and FGDs were analyzed for key themes, and themes were categorized to address the specific aims of the project. Results: Antenatal genetic services play a minor role in antenatal care, with screening and diagnostic procedures available in the private sector and paid for out-of-pocket. KIs and PHMs expect that demand for antenatal genetic services will increase as patients’ purchasing power and knowledge grow but note that prohibitive abortion laws limit the ability of patients to act on test results. Genetic services compete for limited financial and human resources in the free public health system, and inadequate information on the prevalence of congenital disorders limits the ability to understand whether funding for services related to those disorders should be increased. A number of alternatives to scaling up antenatal genetic services within the free health system might be better suited to the Sri Lankan structural and social context. Conclusions: Scaling up antenatal genetic services within the public health system is not feasible in the current financial, legal, and human resource context. Yet current availability and utilization patterns contribute to regional and economic disparities, suggesting that stasis will not bring continued improvements in maternal and child health. More information on the burden of congenital disorders is necessary to fully understand if and how antenatal genetic service availability should be increased in Sri Lanka, but even before that information is gathered, examination of policies for patient referral, termination of pregnancy, and government support for individuals with genetic disease are steps that might bring extend improvements and reduce disparity in maternal and child health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous genome-wide association study (GWAS) of more than 100,000 individuals identified molecular-genetic predictors of educational attainment. We undertook in-depth life-course investigation of the polygenic score derived from this GWAS using the four-decade Dunedin Study (N = 918). There were five main findings. First, polygenic scores predicted adult economic outcomes even after accounting for educational attainments. Second, genes and environments were correlated: Children with higher polygenic scores were born into better-off homes. Third, children's polygenic scores predicted their adult outcomes even when analyses accounted for their social-class origins; social-mobility analysis showed that children with higher polygenic scores were more upwardly mobile than children with lower scores. Fourth, polygenic scores predicted behavior across the life course, from early acquisition of speech and reading skills through geographic mobility and mate choice and on to financial planning for retirement. Fifth, polygenic-score associations were mediated by psychological characteristics, including intelligence, self-control, and interpersonal skill. Effect sizes were small. Factors connecting DNA sequence with life outcomes may provide targets for interventions to promote population-wide positive development.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. DNA, once held to be the unchanging template of heredity, now appears subject to a good deal of environmental change; considered to be identical in all cells and tissues of the body, there is growing evidence that somatic mosaicism is the normal human condition; and treated as the sole biological agent of heritability, we now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, these phenomena appear to be particularly prevalent in the human brain, and likely are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period, and in enabling phenotypic plasticity in offspring in particular. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of “minimal shared maternal effects,” in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that the complexity of higher organisms does not correlate with the ‘complexity’ of the genome (the human genome contains fewer protein coding genes than corn, and many genes are preserved across species). Rather, complexity is associated with the complexity of the pathways and processes whereby the cell utilises the deoxyribonucleic acid molecule, and much else, in the process of phenotype formation. These pro- cesses include the activity of the epigenome, noncoding ribonucleic acids, alternative splicing and post-transla- tional modifications. Not accidentally, all of these pro- cesses appear to be of particular importance for the human brain, the most complex organ in nature. Because these processes can be highly environmentally reactive, they are a key to understanding behavioural plasticity and highlight the importance of the developmental process in explaining behavioural outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A life-course perspective is committed to the proposition that from conception to death, all human outcomes are the result of a continual interaction between the indi- vidual and all of the environments that he or she inhabits at any given point in time. Early development is a critical period, a window of time during the life course when a given exposure can have a critical or permanent in uence on later outcomes. But the impact of exposures upon outcomes does not end at any speci c point in time, inasmuch as life is a continuing interactive and adaptive process. We now know that what applies to human beings also applies to their genomes. The “outcome” of any gene at any given point in time (whether or not it is used to transcribe a particular protein, what form of that protein, and how much) is a product of the interaction between the gene and the multiple environments of which it is a part, which include the epigenome, the cell, the biological human, and the assorted environments he or she occupies (e.g., geographical, socioeconomic, ethnic, etc.). Early life experiences can permanently “reprogram” the epigenome and gene transcription with life-long behavioral consequences. At the same time, the epigenome as well as the genome continue to be environmentally responsive throughout the life course.