5 resultados para Utilidade - Usefulness

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers forecasting the conditional mean and variance from a single-equation dynamic model with autocorrelated disturbances following an ARMA process, and innovations with time-dependent conditional heteroskedasticity as represented by a linear GARCH process. Expressions for the minimum MSE predictor and the conditional MSE are presented. We also derive the formula for all the theoretical moments of the prediction error distribution from a general dynamic model with GARCH(1, 1) innovations. These results are then used in the construction of ex ante prediction confidence intervals by means of the Cornish-Fisher asymptotic expansion. An empirical example relating to the uncertainty of the expected depreciation of foreign exchange rates illustrates the usefulness of the results. © 1992.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high-throughput methods opens the possibility to enhance these empirical structure maps by ab initio calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase separating. In these enhanced maps, the clusters of noncompound-forming systems are much smaller than indicated by the empirical results alone. © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To compare the predictive performance and potential clinical usefulness of risk calculators of the European Randomized Study of Screening for Prostate Cancer (ERSPC RC) with and without information on prostate volume. METHODS: We studied 6 cohorts (5 European and 1 US) with a total of 15,300 men, all biopsied and with pre-biopsy TRUS measurements of prostate volume. Volume was categorized into 3 categories (25, 40, and 60 cc), to reflect use of digital rectal examination (DRE) for volume assessment. Risks of prostate cancer were calculated according to a ERSPC DRE-based RC (including PSA, DRE, prior biopsy, and prostate volume) and a PSA + DRE model (including PSA, DRE, and prior biopsy). Missing data on prostate volume were completed by single imputation. Risk predictions were evaluated with respect to calibration (graphically), discrimination (AUC curve), and clinical usefulness (net benefit, graphically assessed in decision curves). RESULTS: The AUCs of the ERSPC DRE-based RC ranged from 0.61 to 0.77 and were substantially larger than the AUCs of a model based on only PSA + DRE (ranging from 0.56 to 0.72) in each of the 6 cohorts. The ERSPC DRE-based RC provided net benefit over performing a prostate biopsy on the basis of PSA and DRE outcome in five of the six cohorts. CONCLUSIONS: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider multiple factors, including an estimate of prostate volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavior, neuropsychology, and neuroimaging suggest that episodic memories are constructed from interactions among the following basic systems: vision, audition, olfaction, other senses, spatial imagery, language, emotion, narrative, motor output, explicit memory, and search and retrieval. Each system has its own well-documented functions, neural substrates, processes, structures, and kinds of schemata. However, the systems have not been considered as interacting components of episodic memory, as is proposed here. Autobiographical memory and oral traditions are used to demonstrate the usefulness of the basic-systems model in accounting for existing data and predicting novel findings, and to argue that the model, or one similar to it, is the only way to understand episodic memory for complex stimuli routinely encountered outside the laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.