27 resultados para Severe Head-injury
em Duke University
Resumo:
Traumatic brain injury (TBI) has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE). The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc.), and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau), review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.
Resumo:
Few epidemiologic studies describe longitudinal liver chemistry (LC) elevations in cancer patients. A population-based retrospective cohort was identified from 31 Phase 2-3 oncology trials (excluding targeted therapies) conducted from 1985 to 2005 to evaluate background rates of LC elevations in patients (n = 3998) with or without liver metastases. Patients with baseline liver metastases (29% of patients) presented with a 3% prevalence of alanine transaminase (ALT) ≥ 3x upper limits normal (ULN) and 0.2% prevalence of bilirubin ≥ 3xULN. During follow-up, the incidence (per 1000 person-months) of new onset ALT elevations ≥3xULN was 6.1 (95% CI: 4.5, 8.0) and 2.2 (95% CI: 0.9, 4.5) in patients without and with liver metastases, respectively. No new incident cases of ALT and bilirubin elevations suggestive of severe liver injury occurred among those with liver metastases; a single case occurred among those without metastasis. Regardless of the presence of liver metastases, LC elevations were rare in cancer patients during oncology trials, which may be due to enrollment criteria. Our study validates uniform thresholds for detection of LC elevations in oncology studies and serves as an empirical referent point for comparing liver enzyme abnormalities in oncology trials of novel targeted therapies. These data support uniform LC stopping criteria in oncology trials.
Outcomes and Predictors of Mortality in Neurosurgical Patients at Mbarara Regional Referral Hospital
Resumo:
Background:
Knowing the scope of neurosurgical disease at Mbarara Hospital is critical for infrastructure planning, education and training. In this study, we aim to evaluate the neurosurgical outcomes and identify predictors of mortality in order to potentiate platforms for more effective interventions and inform future research efforts at Mbarara Hospital.
Methods:
This is retrospective chart review including patients of all ages with a neurosurgical disease or injury presenting to Mbarara Regional Referral Hospital (MRRH) between January 2012 to September 2015. Descriptive statistics were presented. A univariate analysis was used to obtain the odds ratios of mortality and 95% confidence intervals. Predictors of mortality were determined using multivariate logistic regression model.
Results:
A total of 1876 charts were reviewed. Of these, 1854 (had complete data and were?) were included in the analysis. The overall mortality rate was 12.75%; the mortality rates among all persons who underwent a neurosurgical procedure was 9.72%, and was 13.68% among those who did not undergo a neurosurgical procedure. Over 50% of patients were between 19 and 40 years old and the majority of were males (76.10%). The overall median length of stay was 5 days. Of all neurosurgical admissions, 87% were trauma patients. In comparison to mild head injury, closed head injury and intracranial hematoma patients were 5 (95% CI: 3.77, 8.26) and 2.5 times (95% CI: 1.64,3.98) more likely to die respectively. Procedure and diagnostic imaging were independent negative predictors of mortality (P <0.05). While age, ICU admission, admission GCS were positive predictors of mortality (P <0.05).
Conclusions:
The majority of hospital admissions were TBI patients, with RTIs being the most common mechanism of injury. Age, ICU admission, admission GCS, diagnostic imaging and undergoing surgery were independent predictors of mortality. Going forward, further exploration of patient characteristics is necessary to fully describe mortality outcomes and implement resource appropriate interventions that ultimately improve morbidity and mortality.
Resumo:
BACKGROUND: Administrative or quality improvement registries may or may not contain the elements needed for investigations by trauma researchers. International Classification of Diseases Program for Injury Categorisation (ICDPIC), a statistical program available through Stata, is a powerful tool that can extract injury severity scores from ICD-9-CM codes. We conducted a validation study for use of the ICDPIC in trauma research. METHODS: We conducted a retrospective cohort validation study of 40,418 patients with injury using a large regional trauma registry. ICDPIC-generated AIS scores for each body region were compared with trauma registry AIS scores (gold standard) in adult and paediatric populations. A separate analysis was conducted among patients with traumatic brain injury (TBI) comparing the ICDPIC tool with ICD-9-CM embedded severity codes. Performance in characterising overall injury severity, by the ISS, was also assessed. RESULTS: The ICDPIC tool generated substantial correlations in thoracic and abdominal trauma (weighted κ 0.87-0.92), and in head and neck trauma (weighted κ 0.76-0.83). The ICDPIC tool captured TBI severity better than ICD-9-CM code embedded severity and offered the advantage of generating a severity value for every patient (rather than having missing data). Its ability to produce an accurate severity score was consistent within each body region as well as overall. CONCLUSIONS: The ICDPIC tool performs well in classifying injury severity and is superior to ICD-9-CM embedded severity for TBI. Use of ICDPIC demonstrates substantial efficiency and may be a preferred tool in determining injury severity for large trauma datasets, provided researchers understand its limitations and take caution when examining smaller trauma datasets.
Resumo:
Mild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an accurate history and assessment of behavioral symptoms that are also associated with frequent comorbid disorders, particularly posttraumatic stress disorder (PTSD) and depression. Military veterans from Iraq and Afghanistan with mild TBI (n = 30) with comorbid PTSD and depression and non-TBI participants from primary (n = 42) and confirmatory (n = 28) control groups were assessed with high angular resolution diffusion imaging (HARDI). White matter-specific registration followed by whole-brain voxelwise analysis of crossing fibers provided separate partial volume fractions reflecting the integrity of primary fibers and secondary (crossing) fibers. Loss of white matter integrity in primary fibers (P < 0.05; corrected) was associated with chronic mild TBI in a widely distributed pattern of major fiber bundles and smaller peripheral tracts including the corpus callosum (genu, body, and splenium), forceps minor, forceps major, superior and posterior corona radiata, internal capsule, superior longitudinal fasciculus, and others. Distributed loss of white matter integrity correlated with duration of loss of consciousness and most notably with "feeling dazed or confused," but not diagnosis of PTSD or depressive symptoms. This widespread spatial extent of white matter damage has typically been reported in moderate to severe TBI. The diffuse loss of white matter integrity appears consistent with systemic mechanisms of damage shared by blast- and impact-related mild TBI that involves a cascade of inflammatory and neurochemical events. © 2012 Wiley Periodicals, Inc.
Resumo:
Cognitive impairment is common following traumatic brain injury (TBI), and neuroinflammatory mechanisms may predispose to the development of neurodegenerative disease. Apolipoprotein E (apoE) polymorphisms modify neuroinflammatory responses, and influence both outcome from acute brain injury and the risk of developing neurodegenerative disease. We demonstrate that TBI accelerates neurodegenerative pathology in double-transgenic animals expressing the common human apoE alleles and mutated amyloid precursor protein, and that pathology is exacerbated in the presence of the apoE4 allele. The administration of an apoE-mimetic peptide markedly reduced the development of neurodegenerative pathology in mice homozygous for apoE3 as well as apoE3/E4 heterozygotes. These results demonstrate that TBI accelerates the cardinal neuropathological features of neurodegenerative disease, and establishes the potential for apoE mimetic therapies in reducing pathology associated with neurodegeneration.
Resumo:
BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (rho = 0.463; Spearman's, p = 0.02) and diastolic blood pressure (r = 0.42; Pearson's, p = 0.02), and with the maximum increment in blood potassium (r = 0.70, p<0.001) and maximum decrement in bicarbonate concentrations (r = 0.53, p = 0.003) and pH (r = 0.48, p = 0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0-11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2-0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1-7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12 g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT00147368.
Resumo:
BACKGROUND: Injuries represent a significant and growing public health concern in the developing world, yet their impact on patients and the emergency health-care system in the countries of East Africa has received limited attention. This study evaluates the magnitude and scope of injury related disorders in the population presenting to a referral hospital emergency department in northern Tanzania. METHODS: A retrospective chart review of patients presenting to the emergency department at Kilimanjaro Christian Medical Centre was performed. A standardized data collection form was used for data abstraction from the emergency department logbook and the complete medical record for all injured patients. Patient demographics, mechanism of injury, location, type and outcomes were recorded. RESULTS: Ten thousand six hundred twenty-two patients presented to the emergency department for evaluation and treatment during the 7-month study period. One thousand two hundred twenty-four patients (11.5%) had injuries. Males and individuals aged 15 to 44 years were most frequently injured, representing 73.4% and 57.8%, respectively. Road traffic injuries were the most common mechanism of injury, representing 43.9% of injuries. Head injuries (36.5%) and extremity injuries (59.5%) were the most common location of injury. The majority of injured patients, 59.3%, were admitted from the emergency department to the hospital wards, and 5.6%, required admission to an intensive care unit. Death occurred in 5.4% of injured patients. CONCLUSIONS: These data give a detailed and more robust picture of the patient demographics, mechanisms of injury, types of injury and patient outcomes from similar resource-limited settings.
Resumo:
Chronic human heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased levels of betaAR kinase 1 (betaARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of betaARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of betaARK1 (betaARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca(2+)-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 +/- 1 weeks). In contrast, CSQ/betaARKct mice exhibited a significant increase in mean survival age (15 +/- 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/betaARKct, left ventricular end diastolic dimension 5.60 +/- 0.17 mm vs. 4.19 +/- 0.09 mm, P < 0.005; % fractional shortening, 15 +/- 2 vs. 36 +/- 2, P < 0.005). The enhancement of the survival rate in CSQ/betaARKct mice was substantially potentiated by chronic treatment with the betaAR antagonist metoprolol (CSQ/betaARKct nontreated vs. CSQ/betaARKct metoprolol treated, 15 +/- 1 weeks vs. 25 +/- 2 weeks, P < 0.0001). Thus, overexpression of the betaARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with beta-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of betaARK1 inhibition.
Resumo:
Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.
Resumo:
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Resumo:
Approximately 45,000 individuals are hospitalized annually for burn treatment. Rehabilitation after hospitalization can offer a significant improvement in functional outcomes. Very little is known nationally about rehabilitation for burns, and practices may vary substantially depending on the region based on observed Medicare post-hospitalization spending amounts. This study was designed to measure variation in rehabilitation utilization by state of hospitalization for patients hospitalized with burn injury. This retrospective cohort study used nationally collected data over a 10-year period (2001 to 2010), from the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SIDs). Patients hospitalized for burn injury (n = 57,968) were identified by ICD-9-CM codes and were examined to see specifically if they were discharged immediately to inpatient rehabilitation after hospitalization (primary endpoint). Both unadjusted and adjusted likelihoods were calculated for each state taking into account the effects of age, insurance status, hospitalization at a burn center, and extent of burn injury by TBSA. The relative risk of discharge to inpatient rehabilitation varied by as much as 6-fold among different states. Higher TBSA, having health insurance, higher age, and burn center hospitalization all increased the likelihood of discharge to inpatient rehabilitation following acute care hospitalization. There was significant variation between states in inpatient rehabilitation utilization after adjusting for variables known to affect each outcome. Future efforts should be focused on identifying the cause of this state-to-state variation, its relationship to patient outcome, and standardizing treatment across the United States.
Resumo:
OBJECTIVE: To ascertain the degree of variation, by state of hospitalization, in outcomes associated with traumatic brain injury (TBI) in a pediatric population. DESIGN: A retrospective cohort study of pediatric patients admitted to a hospital with a TBI. SETTING: Hospitals from states in the United States that voluntarily participate in the Agency for Healthcare Research and Quality's Healthcare Cost and Utilization Project. PARTICIPANTS: Pediatric (age ≤ 19 y) patients hospitalized for TBI (N=71,476) in the United States during 2001, 2004, 2007, and 2010. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Primary outcome was proportion of patients discharged to rehabilitation after an acute care hospitalization among alive discharges. The secondary outcome was inpatient mortality. RESULTS: The relative risk of discharge to inpatient rehabilitation varied by as much as 3-fold among the states, and the relative risk of inpatient mortality varied by as much as nearly 2-fold. In the United States, approximately 1981 patients could be discharged to inpatient rehabilitation care if the observed variation in outcomes was eliminated. CONCLUSIONS: There was significant variation between states in both rehabilitation discharge and inpatient mortality after adjusting for variables known to affect each outcome. Future efforts should be focused on identifying the cause of this state-to-state variation, its relationship to patient outcome, and standardizing treatment across the United States.
Resumo:
Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program.