5 resultados para Selection Problems

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.

While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.

For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timing-related defects are major contributors to test escapes and in-field reliability problems for very-deep submicrometer integrated circuits. Small delay variations induced by crosstalk, process variations, power-supply noise, as well as resistive opens and shorts can potentially cause timing failures in a design, thereby leading to quality and reliability concerns. We present a test-grading technique that uses the method of output deviations for screening small-delay defects (SDDs). A new gate-delay defect probability measure is defined to model delay variations for nanometer technologies. The proposed technique intelligently selects the best set of patterns for SDD detection from an n-detect pattern set generated using timing-unaware automatic test-pattern generation (ATPG). It offers significantly lower computational complexity and excites a larger number of long paths compared to a current generation commercial timing-aware ATPG tool. Our results also show that, for the same pattern count, the selected patterns provide more effective coverage ramp-up than timing-aware ATPG and a recent pattern-selection method for random SDDs potentially caused by resistive shorts, resistive opens, and process variations. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Externalizing behavior problems of 124 adolescents were assessed across Grades 7-11. In Grade 9, participants were also assessed across social-cognitive domains after imagining themselves as the object of provocations portrayed in six videotaped vignettes. Participants responded to vignette-based questions representing multiple processes of the response decision step of social information processing. Phase 1 of our investigation supported a two-factor model of the response evaluation process of response decision (response valuation and outcome expectancy). Phase 2 showed significant relations between the set of these response decision processes, as well as response selection, measured in Grade 9 and (a) externalizing behavior in Grade 9 and (b) externalizing behavior in Grades 10-11, even after controlling externalizing behavior in Grades 7-8. These findings suggest that on-line behavioral judgments about aggression play a crucial role in the maintenance and growth of aggressive response tendencies in adolescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although many feature selection methods for classification have been developed, there is a need to identify genes in high-dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore, it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis.Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information available from microarray data with survival outcomes.