3 resultados para Roth, Fedor

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of the New York City (NYC) high school match involved trade-offs among efficiency, stability, and strategy-proofness that raise new theoretical questions. We analyze a model with indifferences-ties-in school preferences. Simulations with field data and the theory favor breaking indifferences the same way at every school-single tiebreaking-in a student-proposing deferred acceptance mechanism. Any inefficiency associated with a realized tiebreaking cannot be removed without harming student incentives. Finally, we empirically document the extent of potential efficiency loss associated with strategy-proofness and stability, and direct attention to some open questions. (JEL C78, D82, I21).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3)  eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tendency for island populations of mammalian taxa to diverge in body size from their mainland counterparts consistently in particular directions is both impressive for its regularity and, especially among rodents, troublesome for its exceptions. However, previous studies have largely ignored mainland body size variation, treating size differences of any magnitude as equally noteworthy. Here, we use distributions of mainland population body sizes to identify island populations as 'extremely' big or small, and we compare traits of extreme populations and their islands with those of island populations more typical in body size. We find that although insular rodents vary in the directions of body size change, 'extreme' populations tend towards gigantism. With classification tree methods, we develop a predictive model, which points to resource limitations as major drivers in the few cases of insular dwarfism. Highly successful in classifying our dataset, our model also successfully predicts change in untested cases.