3 resultados para Regime Shifts

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach is proposed to estimate the natural streamflow regime of a river and to assess the extent of the alterations induced by dam operation related to anthropogenic (e.g., agricultural, hydropower) water uses in engineered river basins. The method consists in the comparison between the seasonal probability density function (pdf) of observed streamflows and the purportedly natural streamflow pdf obtained by a recently proposed and validated probabilistic model. The model employs a minimum of landscape and climate parameters and unequivocally separates the effects of anthropogenic regulations from those produced by hydroclimatic fluctuations. The approach is applied to evaluate the extent of the alterations of intra-annual streamflow variability in a highly engineered alpine catchment of north-eastern Italy, the Piave river. Streamflows observed downstream of the regulation devices in the Piave catchment are found to exhibit smaller means/modes, larger coefficients of variation, and more pronounced peaks than the flows that would be observed in the absence of anthropogenic regulation, suggesting that the anthropogenic disturbance leads to remarkable reductions of river flows, with an increase of the streamflow variability and of the frequency of preferential states far from the mean. Some structural limitations of management approaches based on minimum streamflow requirements (widely used to guide water policies) as opposed to criteria based on whole distributions are also discussed. Copyright © 2010 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restoration has been elevated as an important strategy to reverse the decline of coastal wetlands worldwide. Current practice in restoration science emphasizes minimizing competition between outplanted propagules to maximize planting success. This paradigm persists despite the fact that foundational theory in ecology demonstrates that positive species interactions are key to organism success under high physical stress, such as recolonization of bare substrate. As evidence of how entrenched this restoration paradigm is, our survey of 25 restoration organizations in 14 states in the United States revealed that >95% of these agencies assume minimizing negative interactions (i.e., competition) between outplants will maximize propagule growth. Restoration experiments in both Western and Eastern Atlantic salt marshes demonstrate, however, that a simple change in planting configuration (placing propagules next to, rather than at a distance from, each other) results in harnessing facilitation and increased yields by 107% on average. Thus, small adjustments in restoration design may catalyze untapped positive species interactions, resulting in significantly higher restoration success with no added cost. As positive interactions between organisms commonly occur in coastal ecosystems (especially in more physically stressful areas like uncolonized substrate) and conservation resources are limited, transformation of the coastal restoration paradigm to incorporate facilitation theory may enhance conservation efforts, shoreline defense, and provisioning of ecosystem services such as fisheries production.