3 resultados para Nanocomposites. Nanographite. Epoxy. Expanded graphite. Microwave

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the design and experimental implementation of a power harvesting metamaterial. A maximum of 36.8% of the incident power from a 900 MHz signal is experimentally rectified by an array of metamaterial unit cells. We demonstrate that the maximum harvested power occurs for a resistive load close to 70 Ω in both simulation and experiment. The power harvesting metamaterial is an example of a functional metamaterial that may be suitable for a wide variety of applications that require power delivery to any active components integrated into the metamaterial. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Long-term intraocular pressure reduction by glaucoma drainage devices (GDDs) is often limited by the fibrotic capsule that forms around them. Prior work demonstrates that modifying a GDD with a porous membrane promotes a vascularized and more permeable capsule. This work examines the in vitro fluid dynamics of the Ahmed valve after enclosing the outflow tract with a porous membrane of expanded polytetrafluoroethylene (ePTFE). MATERIALS AND METHODS: The control and modified Ahmed implants (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) were submerged in saline and gelatin and perfused in a system that monitored flow (Q) and pressure (P). Flow rates of 1-50 μl/min were applied and steady state pressure recorded. Resistance was calculated by dividing pressure by flow. RESULTS: Modifying the Ahmed valve implant outflow with expanded ePTFE increased pressure and resistance. Pressure at a flow of 2 μl/min was increased in the PRIME-Ahmed (11.6â±â1.5âmm Hg) relative to the control implant (6.5â±â1.2âmm Hg). Resistance at a flow of 2 μl/min was increased in the PRIME-Ahmed (5.8â±â0.8âmm Hg/μl/min) when compared to the control implant (3.2â±â0.6âmm Hg/μl/min). CONCLUSIONS: Modifying the outflow tract of the Ahmed valve with a porous membrane adds resistance that decreases with increasing flow. The Ahmed valve implant behaves as a variable resistor. It is partially open at low pressures and provides reduced resistance at physiologic flow rates.