12 resultados para Multinational peace-keeping force
em Duke University
Resumo:
Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis.
Resumo:
BACKGROUND: Kinesin motors hydrolyze ATP to produce force and move along microtubules, converting chemical energy into work by a mechanism that is only poorly understood. Key transitions and intermediate states in the process are still structurally uncharacterized, and remain outstanding questions in the field. Perturbing the motor by introducing point mutations could stabilize transitional or unstable states, providing critical information about these rarer states. RESULTS: Here we show that mutation of a single residue in the kinesin-14 Ncd causes the motor to release ADP and hydrolyze ATP faster than wild type, but move more slowly along microtubules in gliding assays, uncoupling nucleotide hydrolysis from force generation. A crystal structure of the motor shows a large rotation of the stalk, a conformation representing a force-producing stroke of Ncd. Three C-terminal residues of Ncd, visible for the first time, interact with the central beta-sheet and dock onto the motor core, forming a structure resembling the kinesin-1 neck linker, which has been proposed to be the primary force-generating mechanical element of kinesin-1. CONCLUSIONS: Force generation by minus-end Ncd involves docking of the C-terminus, which forms a structure resembling the kinesin-1 neck linker. The mechanism by which the plus- and minus-end motors produce force to move to opposite ends of the microtubule appears to involve the same conformational changes, but distinct structural linkers. Unstable ADP binding may destabilize the motor-ADP state, triggering Ncd stalk rotation and C-terminus docking, producing a working stroke of the motor.
Resumo:
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates.
Resumo:
If you walk on sand, it supports your weight. How do the disordered forces between particles in sand organize, to keep you from sinking? This simple question is surprisingly difficult to answer experimentally: measuring forces in three dimensions, between deeply buried grains, is challenging. Here we describe experiments in which we have succeeded in measuring forces inside a granular packing subject to controlled deformations. We connect the measured micro-scale forces to the macro-scale packing force response with an averaging, mean field calculation. This calculation explains how the combination of packing structure and contact deformations produce the observed nontrivial mechanical response of the packing, revealing a surprising microscopic particle deformation enhancement mechanism.
Resumo:
In the study reported here, we examined posttraumatic stress disorder (PTSD) symptoms in 746 Danish soldiers measured on five occasions before, during, and after deployment to Afghanistan. Using latent class growth analysis, we identified six trajectories of change in PTSD symptoms. Two resilient trajectories had low levels across all five times, and a new-onset trajectory started low and showed a marked increase of PTSD symptoms. Three temporary-benefit trajectories, not previously described in the literature, showed decreases in PTSD symptoms during (or immediately after) deployment, followed by increases after return from deployment. Predeployment emotional problems and predeployment traumas, especially childhood adversities, were predictors for inclusion in the nonresilient trajectories, whereas deployment-related stress was not. These findings challenge standard views of PTSD in two ways. First, they show that factors other than immediately preceding stressors are critical for PTSD development, with childhood adversities being central. Second, they demonstrate that the development of PTSD symptoms shows heterogeneity, which indicates the need for multiple measurements to understand PTSD and identify people in need of treatment.
Resumo:
The utility of acoustic radiation force impulse (ARFI) imaging for real-time visualization of abdominal malignancies was investigated. Nine patients presenting with suspicious masses in the liver (n = 7) or kidney (n = 2) underwent combined sonography/ARFI imaging. Images were acquired of a total of 12 tumors in the nine patients. In all cases, boundary definition in ARFI images was improved or equivalent to boundary definition in B-mode images. Displacement contrast in ARFI images was superior to echo contrast in B-mode images for each tumor. The mean contrast for suspected hepatocellular carcinomas (HCCs) in B-mode images was 2.9 dB (range: 1.5-4.2) versus 7.5 dB (range: 3.1-11.9) in ARFI images, with all HCCs appearing more compliant than regional cirrhotic liver parenchyma. The mean contrast for metastases in B-mode images was 3.1 dB (range: 1.2-5.2) versus 9.3 dB (range: 5.7-13.9) in ARFI images, with all masses appearing less compliant than regional non-cirrhotic liver parenchyma. ARFI image contrast (10.4 dB) was superior to B-mode contrast (0.9 dB) for a renal mass. To our knowledge, we present the first in vivo images of abdominal malignancies in humans acquired with the ARFI method or any other technique of imaging tissue elasticity.
Resumo:
The initial results from clinical trials investigating the utility of acoustic radiation force impulse (ARFI) imaging for use with radio-frequency ablation (RFA) procedures in the liver are presented. To date, data have been collected from 6 RFA procedures in 5 unique patients. Large displacement contrast was observed in ARFI images of both pre-ablation malignancies (mean 7.5 dB, range 5.7-11.9 dB) and post-ablation thermal lesions (mean 6.2 dB, range 5.1-7.5 dB). In general, ARFI images provided superior boundary definition of structures relative to the use of conventional sonography alone. Although further investigations are required, initial results are encouraging and demonstrate the clinical promise of the ARFI method for use in many stages of RFA procedures.
Resumo:
BACKGROUND: Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff RFA-treated myocardium. OBJECTIVE: To determine whether intraprocedure ARFI images can identify RFA-treated myocardium in vivo. METHODS: In 8 canines, an electroanatomical mapping-guided intracardiac echo catheter was used to acquire 2-dimensional ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the intracardiac echo transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, noncontiguous lesion, or contiguous lesion. For comparison, 3 separate reviewers confirmed RFA lesion presence and contiguity on the basis of functional conduction block at the imaging plane location on electroanatomical activation maps. RESULTS: Ten percent of ARFI images were discarded because of motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesions had 75.3% specificity and 47.1% sensitivity. CONCLUSIONS: Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation.
Resumo:
Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) estimates indicated diastolic relaxation and systolic contraction in noninfarcted tissues. The M-mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared with the control. Where available, views of infarcted tissue were compared with similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared with the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, whereas in another view, a heterogeneous infarction was seen to be presenting itself as non-contractile in systole.
Resumo:
Our long-term goal is the detection and characterization of vulnerable plaque in the coronary arteries of the heart using intravascular ultrasound (IVUS) catheters. Vulnerable plaque, characterized by a thin fibrous cap and a soft, lipid-rich necrotic core is a precursor to heart attack and stroke. Early detection of such plaques may potentially alter the course of treatment of the patient to prevent ischemic events. We have previously described the characterization of carotid plaques using external linear arrays operating at 9 MHz. In addition, we previously modified circular array IVUS catheters by short-circuiting several neighboring elements to produce fixed beamwidths for intravascular hyperthermia applications. In this paper, we modified Volcano Visions 8.2 French, 9 MHz catheters and Volcano Platinum 3.5 French, 20 MHz catheters by short-circuiting portions of the array for acoustic radiation force impulse imaging (ARFI) applications. The catheters had an effective transmit aperture size of 2 mm and 1.5 mm, respectively. The catheters were connected to a Verasonics scanner and driven with pushing pulses of 180 V p-p to acquire ARFI data from a soft gel phantom with a Young's modulus of 2.9 kPa. The dynamic response of the tissue-mimicking material demonstrates a typical ARFI motion of 1 to 2 microns as the gel phantom displaces away and recovers back to its normal position. The hardware modifications applied to our IVUS catheters mimic potential beamforming modifications that could be implemented on IVUS scanners. Our results demonstrate that the generation of radiation force from IVUS catheters and the development of intravascular ARFI may be feasible.
Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions.
Resumo:
We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.The evolution of capillary forces during evaporation and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimentally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension of the liquid bridges. During both evaporation and extension, the change of interparticle capillary forces consists in a force decrease to zero either gradually or via rupture of the bridge. At small separations between the grains (short & wide bridges) during evaporation and at large volumes during extension, there is a slight initial increase of force. During evaporation, the capillary force decreases slowly at the beginning of the process and quickly at the end of the process; during extension, the capillary force decreases quickly at the beginning and slowly at the end of the process. Rupture during evaporation of the bridges occurs most abruptly for bridges with wider separations (tall and thin), sometimes occurring after only 25% of the water volume was evaporated. The evolution (pinning/depinning) of two geometrical characteristics of the bridge, the diameter of the three-phase contact line and the “apparent” contact angle at the solid/liquid/gas interface, seem to control the capillary force evolution. The findings are of relevance to the mechanics of unsaturated granular media in the final phase of drying.