21 resultados para Exclusive processes

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular theories of shear thickening and shear thinning in associative polymer networks are typically united in that they involve a single kinetic parameter that describes the network -- a relaxation time that is related to the lifetime of the associative bonds. Here we report the steady-shear behavior of two structurally identical metallo-supramolecular polymer networks, for which single-relaxation parameter models break down in dramatic fashion. The networks are formed by the addition of reversible cross-linkers to semidilute entangled solutions of PVP in DMSO, and they differ only in the lifetime of the reversible cross-links. Shear thickening is observed for cross-linkers that have a slower dissociation rate (17 s(-1)), while shear thinning is observed for samples that have a faster dissociation rate (ca. 1400 s(-1)). The difference in the steady shear behavior of the unentangled vs. entangled regime reveals an unexpected, additional competing relaxation, ascribed to topological disentanglement in the semidilute entangled regime that contributes to the rheological properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper investigates stochastic processes forced by independent and identically distributed jumps occurring according to a Poisson process. The impact of different distributions of the jump amplitudes are analyzed for processes with linear drift. Exact expressions of the probability density functions are derived when jump amplitudes are distributed as exponential, gamma, and mixture of exponential distributions for both natural and reflecting boundary conditions. The mean level-crossing properties are studied in relation to the different jump amplitudes. As an example of application of the previous theoretical derivations, the role of different rainfall-depth distributions on an existing stochastic soil water balance model is analyzed. It is shown how the shape of distribution of daily rainfall depths plays a more relevant role on the soil moisture probability distribution as the rainfall frequency decreases, as predicted by future climatic scenarios. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a model for stochastic processes with random marginal distributions. Our model relies on a stick-breaking construction for the marginal distribution of the process, and introduces dependence across locations by using a latent Gaussian copula model as the mechanism for selecting the atoms. The resulting latent stick-breaking process (LaSBP) induces a random partition of the index space, with points closer in space having a higher probability of being in the same cluster. We develop an efficient and straightforward Markov chain Monte Carlo (MCMC) algorithm for computation and discuss applications in financial econometrics and ecology. This article has supplementary material online.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infiltration of myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis in many types of cancer. The polypeptide chemokine PK2 (Bv8, PROK2) has been shown to regulate myeloid cell mobilization from the bone marrow, leading to activation of the angiogenic process, as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 were shown to display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. In this study we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the context of glioblastoma and pancreatic cancer xenograft tumor models. For the highly vascularized glioblastoma, PKRA7 was associated with decreased blood vessel density and increased necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 appears to be mediated by the blockage of myeloid cell migration/infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of certain pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both types of tumor. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by two distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Externalizing behavior problems of 124 adolescents were assessed across Grades 7-11. In Grade 9, participants were also assessed across social-cognitive domains after imagining themselves as the object of provocations portrayed in six videotaped vignettes. Participants responded to vignette-based questions representing multiple processes of the response decision step of social information processing. Phase 1 of our investigation supported a two-factor model of the response evaluation process of response decision (response valuation and outcome expectancy). Phase 2 showed significant relations between the set of these response decision processes, as well as response selection, measured in Grade 9 and (a) externalizing behavior in Grade 9 and (b) externalizing behavior in Grades 10-11, even after controlling externalizing behavior in Grades 7-8. These findings suggest that on-line behavioral judgments about aggression play a crucial role in the maintenance and growth of aggressive response tendencies in adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolution occurring over contemporary time scales can have important effects on populations, communities, and ecosystems. Recent studies show that the magnitude of these effects can be large and can generate feedbacks that further shape evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenergic receptors are prototypic models for the study of the relations between structure and function of G protein-coupled receptors. Each receptor is encoded by a distinct gene. These receptors are integral membrane proteins with several striking structural features. They consist of a single subunit containing seven stretches of 20-28 hydrophobic amino acids that represent potential membrane-spanning alpha-helixes. Many of these receptors share considerable amino acid sequence homology, particularly in the transmembrane domains. All of these macromolecules share other similarities that include one or more potential sites of extracellular N-linked glycosylation near the amino terminus and several potential sites of regulatory phosphorylation that are located intracellularly. By using a variety of techniques, it has been demonstrated that various regions of the receptor molecules are critical for different receptor functions. The seven transmembrane regions of the receptors appear to form a ligand-binding pocket. Cysteine residues in the extracellular domains may stabilize the ligand-binding pocket by participating in disulfide bonds. The cytoplasmic domains contain regions capable of interacting with G proteins and various kinases and are therefore important in such processes as signal transduction, receptor-G protein coupling, receptor sequestration, and down-regulation. Finally, regions of these macromolecules may undergo posttranslational modifications important in the regulation of receptor function. Our understanding of these complex relations is constantly evolving and much work remains to be done. Greater understanding of the basic mechanisms involved in G protein-coupled, receptor-mediated signal transduction may provide leads into the nature of certain pathophysiological states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.

Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.

In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.


For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv the mean number of off-targets was found to be 15.0 + 13.2 and 38.2 + 61.4, respectively, which results in a reduction of greater than 90% of the effective oligonucleotide concentration. It was also demonstrated that there was a high variability in the number of off-targets over the length of a gene, but that on average, there was no general gene location that could be targeted to reduce off-targets. Therefore, this analysis needs to be performed for each gene in question. It was also demonstrated that the thermodynamic binding energy between the oligonucleotide and the mRNA accounted for 83% of the variation in the silencing efficiency, compared to the number of off-targets, which explained 43% of the variance of the silencing efficiency. This suggests that optimizing thermodynamic parameters must be prioritized over minimizing the number of off-targets. In conclusion for the antisense work, these results suggest that off-target hybrids can account for a greater than 90% reduction in the concentration of the silencing oligonucleotides, and that the effective concentration can be increased through the rational design of silencing targets by minimizing off-target hybrids.

Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of E. coli K12 MG1655 in the presence of coliphage Ec2 ranged up to 2 h-1, and were dependent on both the initial phage and bacterial concentrations. Increasing initial phage concentrations resulted in increasing disinfection rates, and generally, increasing initial bacterial concentrations resulted in increasing disinfection rates. However, disinfection rates were found to plateau at higher bacterial and phage concentrations. A multiple linear regression model was used to predict the disinfection rates as a function of the initial phage and bacterial concentrations, and this model was able to explain 93% of the variance in the disinfection rates. The disinfection rates were also modeled with a particle aggregation model. The results from these model simulations suggested that at lower phage and bacterial concentrations there are not enough collisions to support active disinfection rates, which therefore, limits the conditions and systems where phage based bacterial disinfection is possible. Additionally, the particle aggregation model over predicted the disinfection rates at higher phage and bacterial concentrations of 108 PFU/mL and 108 CFU/mL, suggesting other interactions were occurring at these higher concentrations. Overall, this work highlights the need for the development of alternative models to more accurately describe the dynamics of this system at a variety of phage and bacterial concentrations. Finally, the minimum required hydraulic residence time was calculated for a continuous stirred-tank reactor and a plug flow reactor (PFR) as a function of both the initial phage and bacterial concentrations, which suggested that phage treatment in a PFR is theoretically possible.

In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.

Finally, for an industrial application, the use of phages to inhibit invasive Lactobacilli in ethanol fermentations was investigated. It was demonstrated that phage 8014-B2 can achieve a greater than 3-log inactivation of Lactobacillus plantarum during a 48 h fermentation. Additionally, it was shown that phages can be used to protect final product yields and maintain yeast viability. Through modeling the fermentation system with differential equations it was determined that there was a 10 h window in the beginning of the fermentation run, where the addition of phages can be used to protect final product yields, and after 20 h no additional benefit of the phage addition was observed.

In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptide tyrosine tyrosine (PYY) is produced and secreted from L cells of the gastrointestinal mucosa. To study the anatomy and function of PYY-secreting L cells, we developed a transgenic PYY-green fluorescent protein mouse model. PYY-containing cells exhibited green fluorescence under UV light and were immunoreactive to antibodies against PYY and GLP-1 (glucagon-like peptide-1, an incretin hormone also secreted by L cells). PYY-GFP cells from 15 μm thick sections were imaged using confocal laser scanning microscopy and three-dimensionally (3D) reconstructed. Results revealed unique details of the anatomical differences between ileal and colonic PYY-GFP cells. In ileal villi, the apical portion of PYY cells makes minimal contact with the lumen of the gut. Long pseudopod-like basal processes extend from these cells and form an interface between the mucosal epithelium and the lamina propria. Some basal processes are up to 50 μm in length. Multiple processes can be seen protruding from one cell and these often have a terminus resembling a synapse that appears to interact with neighboring cells. In colonic crypts, PYY-GFP cells adopt a spindle-like shape and weave in between epithelial cells, while maintaining contact with the lumen and lamina propria. In both tissues, cytoplasmic granules containing the hormones PYY and GLP-1 are confined to the base of the cell, often filling the basal process. The anatomical arrangement of these structures suggests a dual function as a dock for receptors to survey absorbed nutrients and as a launching platform for hormone secretion in a paracrine fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the underlying mechanics of autobiographical memory may be identical across cultures, the processing of information differs. Undergraduates from Japan, Turkey, and the USA rated 30 autobiographical memories on 15 phenomenological and cognitive properties. Mean values were similar across cultures, with means from the Japanese sample being lower on most measures but higher on belief in the accuracy of their memories. Correlations within individuals were also similar across cultures, with correlations from the Turkish sample being higher between measures of language and measures of recollection and belief. For all three cultures, in multiple regression analyses, measures of recollection were predicted by visual imagery, auditory imagery, and emotions, whereas measures of belief were predicted by knowledge of the setting. These results show subtle cultural differences in the experience of remembering.