3 resultados para Diplomatic and consular service.

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Anti-cholinergic medications have been associated with increased risks of cognitive impairment, premature mortality and increased risk of hospitalisation. Anti-cholinergic load associated with medication increases as death approaches in those with advanced cancer, yet little is known about associated adverse outcomes in this setting. METHODS: A substudy of 112 participants in a randomised control trial who had cancer and an Australia modified Karnofsky Performance Scale (AKPS) score (AKPS) of 60 or above, explored survival and health service utilisation; with anti-cholinergic load calculated using the Clinician Rated Anti-cholinergic Scale (modified version) longitudinally to death. A standardised starting point for prospectively calculating survival was an AKPS of 60 or above. RESULTS: Baseline entry to the sub-study was a mean 62 +/- 81 days (median 37, range 1-588) days before death (survival), with mean of 4.8 (median 3, SD 4.18, range 1 - 24) study assessments in this time period. Participants spent 22% of time as an inpatient. There was no significant association between anti-cholinergic score and time spent as an inpatient (adjusted for survival time) (p = 0.94); or survival time. DISCUSSION: No association between anti-cholinergic load and survival or time spent as an inpatient was seen. Future studies need to include cognitively impaired populations where the risks of symptomatic deterioration may be more substantial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The care and protection of the estimated 143,000,000 orphaned and abandoned children (OAC) worldwide is of great importance to global policy makers and child service providers in low and middle income countries (LMICs), yet little is known about rates of child labour among OAC, what child and caregiver characteristics predict child engagement in work and labour, or when such work infers with schooling. This study examines rates and correlates of child labour among OAC and associations of child labour with schooling in a cohort of OAC in 5 LMICs. METHODS: The Positive Outcomes for Orphans (POFO) study employed a two-stage random sampling survey methodology to identify 1480 single and double orphans and children abandoned by both parents ages 6-12 living in family settings in five LMICs: Cambodia, Ethiopia, India, Kenya, and Tanzania. Regression models examined child and caregiver associations with: any work versus no work; and with working <21, 21-27, and 28+ hours during the past week, and child labour (UNICEF definition). RESULTS: The majority of OAC (60.7%) engaged in work during the past week, and of those who worked, 17.8% (10.5% of the total sample) worked 28 or more hours. More than one-fifth (21.9%; 13% of the total sample) met UNICEF's child labour definition. Female OAC and those in good health had increased odds of working. OAC living in rural areas, lower household wealth and caregivers not earning an income were associated with increased child labour. Child labour, but not working fewer than 28 hours per week, was associated with decreased school attendance. CONCLUSIONS: One in seven OAC in this study were reported to be engaged in child labour. Policy makers and social service providers need to pay close attention to the demands being placed on female OAC, particularly in rural areas and poor households with limited income sources. Programs to promote OAC school attendance may need to focus on the needs of families as well as the OAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.