9 resultados para Curr?culo

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To make adaptive choices, individuals must sometimes exhibit patience, forgoing immediate benefits to acquire more valuable future rewards [1-3]. Although humans account for future consequences when making temporal decisions [4], many animal species wait only a few seconds for delayed benefits [5-10]. Current research thus suggests a phylogenetic gap between patient humans and impulsive, present-oriented animals [9, 11], a distinction with implications for our understanding of economic decision making [12] and the origins of human cooperation [13]. On the basis of a series of experimental results, we reject this conclusion. First, bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) exhibit a degree of patience not seen in other animals tested thus far. Second, humans are less willing to wait for food rewards than are chimpanzees. Third, humans are more willing to wait for monetary rewards than for food, and show the highest degree of patience only in response to decisions about money involving low opportunity costs. These findings suggest that core components of the capacity for future-oriented decisions evolved before the human lineage diverged from apes. Moreover, the different levels of patience that humans exhibit might be driven by fundamental differences in the mechanisms representing biological versus abstract rewards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primates must navigate complex social landscapes in their daily lives: gathering information from and about others, competing with others for food and mates, and cooperating to obtain rewards as well. Gaze-following often provides important clues as to what others see, know, or will do; using information about social attention is thus crucial for primates to be competent social actors. However, the cognitive bases of the gaze-following behaviors that primates exhibit appear to vary widely across species. The ultimate challenge of such analyses will therefore be to understand why such different cognitive mechanisms have evolved across species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In sexually reproducing animals, male and female reproductive strategies often conflict. In some species, males use aggression to overcome female choice, but debate persists over the extent to which this strategy is successful. Previous studies of male aggression toward females among wild chimpanzees have yielded contradictory results about the relationship between aggression and mating behavior. Critically, however, copulation frequency in primates is not always predictive of reproductive success. We analyzed a 17-year sample of behavioral and genetic data from the Kasekela chimpanzee (Pan troglodytes schweinfurthii) community in Gombe National Park, Tanzania, to test the hypothesis that male aggression toward females increases male reproductive success. We examined the effect of male aggression toward females during ovarian cycling, including periods when the females were sexually receptive (swollen) and periods when they were not. We found that, after controlling for confounding factors, male aggression during a female's swollen periods was positively correlated with copulation frequency. However, aggression toward swollen females was not predictive of paternity. Instead, aggression by high-ranking males toward females during their nonswollen periods was positively associated with likelihood of paternity. This indicates that long-term patterns of intimidation allow high-ranking males to increase their reproductive success, supporting the sexual coercion hypothesis. To our knowledge, this is the first study to present genetic evidence of sexual coercion as an adaptive strategy in a social mammal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work has identified a novel RSC-nucleosome complex that both strongly phases flanking nucleosomes and presents regulatory sites for ready access. These results challenge several widely held views.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human neocortex differs from that of other great apes in several notable regards, including altered cell cycle, prolonged corticogenesis, and increased size [1-5]. Although these evolutionary changes most likely contributed to the origin of distinctively human cognitive faculties, their genetic basis remains almost entirely unknown. Highly conserved non-coding regions showing rapid sequence changes along the human lineage are candidate loci for the development and evolution of uniquely human traits. Several studies have identified human-accelerated enhancers [6-14], but none have linked an expression difference to a specific organismal trait. Here we report the discovery of a human-accelerated regulatory enhancer (HARE5) of FZD8, a receptor of the Wnt pathway implicated in brain development and size [15, 16]. Using transgenic mice, we demonstrate dramatic differences in human and chimpanzee HARE5 activity, with human HARE5 driving early and robust expression at the onset of corticogenesis. Similar to HARE5 activity, FZD8 is expressed in neural progenitors of the developing neocortex [17-19]. Chromosome conformation capture assays reveal that HARE5 physically and specifically contacts the core Fzd8 promoter in the mouse embryonic neocortex. To assess the phenotypic consequences of HARE5 activity, we generated transgenic mice in which Fzd8 expression is under control of orthologous enhancers (Pt-HARE5::Fzd8 and Hs-HARE5::Fzd8). In comparison to Pt-HARE5::Fzd8, Hs-HARE5::Fzd8 mice showed marked acceleration of neural progenitor cell cycle and increased brain size. Changes in HARE5 function unique to humans thus alter the cell-cycle dynamics of a critical population of stem cells during corticogenesis and may underlie some distinctive anatomical features of the human brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Long-term intraocular pressure reduction by glaucoma drainage devices (GDDs) is often limited by the fibrotic capsule that forms around them. Prior work demonstrates that modifying a GDD with a porous membrane promotes a vascularized and more permeable capsule. This work examines the in vitro fluid dynamics of the Ahmed valve after enclosing the outflow tract with a porous membrane of expanded polytetrafluoroethylene (ePTFE). MATERIALS AND METHODS: The control and modified Ahmed implants (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) were submerged in saline and gelatin and perfused in a system that monitored flow (Q) and pressure (P). Flow rates of 1-50 μl/min were applied and steady state pressure recorded. Resistance was calculated by dividing pressure by flow. RESULTS: Modifying the Ahmed valve implant outflow with expanded ePTFE increased pressure and resistance. Pressure at a flow of 2 μl/min was increased in the PRIME-Ahmed (11.6 ± 1.5 mm Hg) relative to the control implant (6.5 ± 1.2 mm Hg). Resistance at a flow of 2 μl/min was increased in the PRIME-Ahmed (5.8 ± 0.8 mm Hg/μl/min) when compared to the control implant (3.2 ± 0.6 mm Hg/μl/min). CONCLUSIONS: Modifying the outflow tract of the Ahmed valve with a porous membrane adds resistance that decreases with increasing flow. The Ahmed valve implant behaves as a variable resistor. It is partially open at low pressures and provides reduced resistance at physiologic flow rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein engineering over the past four years has made rhodopsin-based genetically encoded voltage indicators a leading candidate to achieve the task of reporting action potentials from a population of genetically targeted neurons in vivo. Rational design and large-scale screening efforts have steadily improved the dynamic range and kinetics of the rhodopsin voltage-sensing domain, and coupling these rhodopsins to bright fluorescent proteins has supported bright fluorescence readout of the large and rapid rhodopsin voltage response. The rhodopsin-fluorescent protein fusions have the highest achieved signal-to-noise ratios for detecting action potentials in neuronal cultures to date, and have successfully reported single spike events in vivo. Given the rapid pace of current development, the genetically encoded voltage indicator class is nearing the goal of robust spike imaging during live-animal behavioral experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dietary Approaches to Stop Hypertension (DASH) trial showed that a diet rich in fruits, vegetables, low-fat dairy products with reduced total and saturated fat, cholesterol, and sugar-sweetened products effectively lowers blood pressure in individuals with prehypertension and stage I hypertension. Limited evidence is available on the safety and efficacy of the DASH eating pattern in special patient populations that were excluded from the trial. Caution should be exercised before initiating the DASH diet in patients with chronic kidney disease, chronic liver disease, and those who are prescribed renin-angiotensin-aldosterone system antagonist, but these conditions are not strict contraindications to DASH. Modifications to the DASH diet may be necessary to facilitate its use in patients with chronic heart failure, uncontrolled diabetes mellitus type II, lactose intolerance, and celiac disease. In general, the DASH diet can be adopted by most patient populations and initiated simultaneously with medication therapy and other lifestyle interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two decades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dinosaurs during the Jurassic (around 165-150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today.