9 resultados para Computers.
em Duke University
Resumo:
A spring 2016 report about public computer usage on the first floor of Perkins and Bostock libraries. This report includes data from survey questions, an observational study, and transaction logs. The report also includes recommendations for changes based on the data collected.
Resumo:
We propose an ISA extension that decouples the data access and register write operations in a load instruction. We describe system and hardware support for decoupled loads. Furthermore, we show how compilers can generate better static instruction schedules by hoisting a decoupled load’s data access above may-alias stores and branches. We find that decoupled loads improve performance with geometric mean speedups of 8.4%.
Resumo:
OBJECTIVE: The Veterans Health Administration has developed My HealtheVet (MHV), a Web-based portal that links veterans to their care in the veteran affairs (VA) system. The objective of this study was to measure diabetic veterans' access to and use of the Internet, and their interest in using MHV to help manage their diabetes. MATERIALS AND METHODS: Cross-sectional mailed survey of 201 patients with type 2 diabetes and hemoglobin A(1c) > 8.0% receiving primary care at any of five primary care clinic sites affiliated with a VA tertiary care facility. Main measures included Internet usage, access, and attitudes; computer skills; interest in using the Internet; awareness of and attitudes toward MHV; demographics; and socioeconomic status. RESULTS: A majority of respondents reported having access to the Internet at home. Nearly half of all respondents had searched online for information about diabetes, including some who did not have home Internet access. More than a third obtained "some" or "a lot" of their health-related information online. Forty-one percent reported being "very interested" in using MHV to help track their home blood glucose readings, a third of whom did not have home Internet access. Factors associated with being "very interested" were as follows: having access to the Internet at home (p < 0.001), "a lot/some" trust in the Internet as a source of health information (p = 0.002), lower age (p = 0.03), and some college (p = 0.04). Neither race (p = 0.44) nor income (p = 0.25) was significantly associated with interest in MHV. CONCLUSIONS: This study found that a diverse sample of older VA patients with sub-optimally controlled diabetes had a level of familiarity with and access to the Internet comparable to an age-matched national sample. In addition, there was a high degree of interest in using the Internet to help manage their diabetes.
Resumo:
Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.
Resumo:
BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows.
Resumo:
The advent of digital microfluidic lab-on-a-chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. Moreover, digital microfluidics is being applied in other areas such as airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In most diagnostic and chemical-detection applications, a key challenge is the preparation of the analyte for presentation to the on-chip detection system. Thus, in diagnostics, raw physiological samples must be introduced onto the chip and then further processed by lysing blood cells and extracting DNA. For massively parallel DNA sequencing, sample preparation can be performed off chip, but the synthesis steps must be performed in a sequential on-chip format by automated control of buffers and nucleotides to extend the read lengths of DNA fragments. In airborne particulate-sampling applications, the sample collection from an air stream must be integrated into the LoC analytical component, which requires a collection droplet to scan an exposed impacted surface after its introduction into a closed analytical section. Finally, in tissue-engineering applications, the challenge for LoC technology is to build high-resolution (less than 10 microns) 3D tissue constructs with embedded cells and growth factors by manipulating and maintaining live cells in the chip platform. This article discusses these applications and their implementation in digital-microfluidic LoC platforms. © 2007 IEEE.
Resumo:
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Resumo:
BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.