6 resultados para Campbell County (Ga.)--Maps.
em Duke University
Resumo:
BACKGROUND: Durham County, North Carolina, faces high rates of human immunodeficiency virus (HIV) infection (with or without progression to AIDS) and sexually transmitted diseases (STDs). We explored the use of health care services and the prevalence of coinfections, among HIV-infected residents, and we recorded community perspectives on HIV-related issues. METHODS: We evaluated data on diagnostic codes, outpatient visits, and hospitalizations for individuals with HIV infection, STDs, and/or hepatitis B or C who visited Duke University Hospital System (DUHS). Viral loads for HIV-infected patients receiving care were estimated for 2009. We conducted geospatial mapping to determine disease trends and used focus groups and key informant interviews to identify barriers and solutions to improving testing and care. RESULTS: We identified substantial increases in HIV/STDs in the southern regions of the county. During the 5-year period, 1,291 adults with HIV infection, 4,245 with STDs, and 2,182 with hepatitis B or C were evaluated at DUHS. Among HIV-infected persons, 13.9% and 21.8% were coinfected with an STD or hepatitis B or C, respectively. In 2009, 65.7% of HIV-infected persons receiving care had undetectable viral loads. Barriers to testing included stigma, fear, and denial of risk, while treatment barriers included costs, transportation, and low medical literacy. LIMITATIONS: Data for health care utilization and HIV load were available from different periods. Focus groups were conducted among a convenience sample, but they represented a diverse population. CONCLUSIONS: Durham County has experienced an increase in the number of HIV-infected persons in the county, and coinfections with STDs and hepatitis B or C are common. Multiple barriers to testing/treatment exist in the community. Coordinated care models are needed to improve access to HIV care and to reduce testing and treatment barriers.
Resumo:
The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high-throughput methods opens the possibility to enhance these empirical structure maps by ab initio calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase separating. In these enhanced maps, the clusters of noncompound-forming systems are much smaller than indicated by the empirical results alone. © 2010 The American Physical Society.
A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data.
Resumo:
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data.
Resumo:
The growing exposure to chemicals in our environment and the increasing concern over their impact on health have elevated the need for new methods for surveying the detrimental effects of these compounds. Today's gold standard for assessing the effects of toxicants on the brain is based on hematoxylin and eosin (H&E)-stained histology, sometimes accompanied by special stains or immunohistochemistry for neural processes and myelin. This approach is time-consuming and is usually limited to a fraction of the total brain volume. We demonstrate that magnetic resonance histology (MRH) can be used for quantitatively assessing the effects of central nervous system toxicants in rat models. We show that subtle and sparse changes to brain structure can be detected using magnetic resonance histology, and correspond to some of the locations in which lesions are found by traditional pathological examination. We report for the first time diffusion tensor image-based detection of changes in white matter regions, including fimbria and corpus callosum, in the brains of rats exposed to 8 mg/kg and 12 mg/kg trimethyltin. Besides detecting brain-wide changes, magnetic resonance histology provides a quantitative assessment of dose-dependent effects. These effects can be found in different magnetic resonance contrast mechanisms, providing multivariate biomarkers for the same spatial location. In this study, deformation-based morphometry detected areas where previous studies have detected cell loss, while voxel-wise analyses of diffusion tensor parameters revealed microstructural changes due to such things as cellular swelling, apoptosis, and inflammation. Magnetic resonance histology brings a valuable addition to pathology with the ability to generate brain-wide quantitative parametric maps for markers of toxic insults in the rodent brain.