2 resultados para Automatic selection

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timing-related defects are major contributors to test escapes and in-field reliability problems for very-deep submicrometer integrated circuits. Small delay variations induced by crosstalk, process variations, power-supply noise, as well as resistive opens and shorts can potentially cause timing failures in a design, thereby leading to quality and reliability concerns. We present a test-grading technique that uses the method of output deviations for screening small-delay defects (SDDs). A new gate-delay defect probability measure is defined to model delay variations for nanometer technologies. The proposed technique intelligently selects the best set of patterns for SDD detection from an n-detect pattern set generated using timing-unaware automatic test-pattern generation (ATPG). It offers significantly lower computational complexity and excites a larger number of long paths compared to a current generation commercial timing-aware ATPG tool. Our results also show that, for the same pattern count, the selected patterns provide more effective coverage ramp-up than timing-aware ATPG and a recent pattern-selection method for random SDDs potentially caused by resistive shorts, resistive opens, and process variations. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge-based radiation treatment is an emerging concept in radiotherapy. It

mainly refers to the technique that can guide or automate treatment planning in

clinic by learning from prior knowledge. Dierent models are developed to realize

it, one of which is proposed by Yuan et al. at Duke for lung IMRT planning. This

model can automatically determine both beam conguration and optimization ob-

jectives with non-coplanar beams based on patient-specic anatomical information.

Although plans automatically generated by this model demonstrate equivalent or

better dosimetric quality compared to clinical approved plans, its validity and gener-

ality are limited due to the empirical assignment to a coecient called angle spread

constraint dened in the beam eciency index used for beam ranking. To eliminate

these limitations, a systematic study on this coecient is needed to acquire evidences

for its optimal value.

To achieve this purpose, eleven lung cancer patients with complex tumor shape

with non-coplanar beams adopted in clinical approved plans were retrospectively

studied in the frame of the automatic lung IMRT treatment algorithm. The primary

and boost plans used in three patients were treated as dierent cases due to the

dierent target size and shape. A total of 14 lung cases, thus, were re-planned using

the knowledge-based automatic lung IMRT planning algorithm by varying angle

spread constraint from 0 to 1 with increment of 0.2. A modied beam angle eciency

index used for navigate the beam selection was adopted. Great eorts were made to assure the quality of plans associated to every angle spread constraint as good

as possible. Important dosimetric parameters for PTV and OARs, quantitatively

re

ecting the plan quality, were extracted from the DVHs and analyzed as a function

of angle spread constraint for each case. Comparisons of these parameters between

clinical plans and model-based plans were evaluated by two-sampled Students t-tests,

and regression analysis on a composite index built on the percentage errors between

dosimetric parameters in the model-based plans and those in the clinical plans as a

function of angle spread constraint was performed.

Results show that model-based plans generally have equivalent or better quality

than clinical approved plans, qualitatively and quantitatively. All dosimetric param-

eters except those for lungs in the automatically generated plans are statistically

better or comparable to those in the clinical plans. On average, more than 15% re-

duction on conformity index and homogeneity index for PTV and V40, V60 for heart

while an 8% and 3% increase on V5, V20 for lungs, respectively, are observed. The

intra-plan comparison among model-based plans demonstrates that plan quality does

not change much with angle spread constraint larger than 0.4. Further examination

on the variation curve of the composite index as a function of angle spread constraint

shows that 0.6 is the optimal value that can result in statistically the best achievable

plans.