3 resultados para Absolute configuration
em Duke University
Resumo:
The tandem allylic oxidation/oxa-Michael reaction promoted by the gem-disubstituent effect and the 2-methyl-6-nitrobenzoic anhydride (MNBA)-mediated dimerization were explored for the efficient and facile synthesis of cyanolide A.
Resumo:
We systematically investigated the surface plasmon resonance in one-dimensional (1D) subwavelength nanostructured metal films under the Kretschmann configuration. We calculated the reflectance, transmittance, and absorption for varying the dielectric fill factor, the period of the 1D nanostructure, and the metal film thickness. We have found that the small dielectric slits in the metal films reduce the surface plasmon resonance angle and move it toward the critical angle for total internal reflection. The reduction in surface plasmon resonance angle in nanostructured metal films is due to the increased intrinsic free electron oscillation frequency in metal nanostructures. Also we have found that the increasing the spatial frequency of the 1D nanograting reduces the surface plasmon resonance angle, which indicates that less momentum is needed to match the momentum of the surface plasmon-polariton. The variation in the nanostructured metal film thickness changes the resonance angle slightly, but mainly remains as a mean to adjust the coupling between the incident optical wave and the surface plasmon-polariton wave. © 2009 American Institute of Physics.
Resumo:
Here we show that the configuration of a slender enclosure can be optimized such that the radiation heating of a stream of solid is performed with minimal fuel consumption at the global level. The solid moves longitudinally at constant rate through the enclosure. The enclosure is heated by gas burners distributed arbitrarily, in a manner that is to be determined. The total contact area for heat transfer between the hot enclosure and the cold solid is fixed. We find that minimal global fuel consumption is achieved when the longitudinal distribution of heaters is nonuniform, with more heaters near the exit than the entrance. The reduction in fuel consumption relative to when the heaters are distributed uniformly is of order 10%. Tapering the plan view (the floor) of the heating area yields an additional reduction in overall fuel consumption. The best shape is when the floor area is a slender triangle on which the cold solid enters by crossing the base. These architectural features recommend the proposal to organize the flow of the solid as a dendritic design, which enters as several branches, and exits as a single hot stream of prescribed temperature. The thermodynamics of heating is presented in modern terms in the Sec. (exergy destruction, entropy generation). The contribution is that to optimize "thermodynamically" is the same as reducing the consumption of fuel. © 2010 American Institute of Physics.