3 resultados para impact fatigue (repeated impulsive loading)

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prenatal nicotine exposure (PNE) is linked to a large number of psychiatric disorders, including attention deficit hyperactivity disorder (ADHD). Current literature suggests that core deficits observed in ADHD reflect abnormal inhibitory control governed by the prefrontal cortex (PFC) of the brain. The PFC is structurally altered by PNE, but it is still unclear how neural firing is affected during tasks that test behavioral inhibition, such as the stop-signal task, or if neural correlates related to inhibitory control are affected after PNE in awake behaving animals. To address these questions, we recorded from single medial PFC (mPFC) neurons in control rats and PNE rats as they performed our stopsignal task. We found that PNE rats were faster for all trial types and were less likely to inhibit the behavioral response on STOP trials. Neurons in mPFC fired more strongly on STOP trials and were correlated with accuracy and reaction time. Although the number of neurons exhibiting significant modulation during task performance did not differ between groups, overall activity in PNE was reduced. We conclude that PNE makes rats impulsive and reduces firing in mPFC neurons that carry signals related to response inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation focuses on design challenges caused by secondary impacts to printed wiring assemblies (PWAs) within hand-held electronics due to accidental drop or impact loading. The continuing increase of functionality, miniaturization and affordability has resulted in a decrease in the size and weight of handheld electronic products. As a result, PWAs have become thinner and the clearances between surrounding structures have decreased. The resulting increase in flexibility of the PWAs in combination with the reduced clearances requires new design rules to minimize and survive possible internal collisions impacts between PWAs and surrounding structures. Such collisions are being termed ‘secondary impact’ in this study. The effect of secondary impact on board-level drop reliability of printed wiring boards (PWBs) assembled with MEMS microphone components, is investigated using a combination of testing, response and stress analysis, and damage modeling. The response analysis is conducted using a combination of numerical finite element modeling and simplified analytic models for additional parametric sensitivity studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spring-mass model is able to accurately represent hopping spring-like behavior (leg and joint stiffness), and leg and joint stiffness changes can reveal overall motor control responses to neural and muscular contributors of neuromuscular fatigue. By understanding leg stiffness modulation, we can determine which variables the nervous system targets to maintain motor performance and stability. The purpose of this study was to determine how neuromuscular fatigue affects hopping behavior by examining leg and joint stiffness before and after a single-leg calf raise fatiguing protocol. Post-fatigue, leg stiffness decreased for the exercised leg, but not for the non-exercised leg. Ankle and knee joint stiffness did not significantly change for either leg. This indicates that leg stiffness decreases primarily from muscular fatigue, but was not explained by ankle and knee joint stiffness. The decrease in leg stiffness may be an attempt to soften landing impact, while at the same time maintaining performance.