2 resultados para impact analysis

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Travel demand models are important tools used in the analysis of transportation plans, projects, and policies. The modeling results are useful for transportation planners making transportation decisions and for policy makers developing transportation policies. Defining the level of detail (i.e., the number of roads) of the transport network in consistency with the travel demand model’s zone system is crucial to the accuracy of modeling results. However, travel demand modelers have not had tools to determine how much detail is needed in a transport network for a travel demand model. This dissertation seeks to fill this knowledge gap by (1) providing methodology to define an appropriate level of detail for a transport network in a given travel demand model; (2) implementing this methodology in a travel demand model in the Baltimore area; and (3) identifying how this methodology improves the modeling accuracy. All analyses identify the spatial resolution of the transport network has great impacts on the modeling results. For example, when compared to the observed traffic data, a very detailed network underestimates traffic congestion in the Baltimore area, while a network developed by this dissertation provides a more accurate modeling result of the traffic conditions. Through the evaluation of the impacts a new transportation project has on both networks, the differences in their analysis results point out the importance of having an appropriate level of network detail for making improved planning decisions. The results corroborate a suggested guideline concerning the development of a transport network in consistency with the travel demand model’s zone system. To conclude this dissertation, limitations are identified in data sources and methodology, based on which a plan of future studies is laid out.