4 resultados para Visible Light Absorption

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthesis –the conversion of sunlight to chemical energy –is fundamental for supporting life on our planet. Despite its importance, the physical principles that underpin the primary steps of photosynthesis, from photon absorption to electronic charge separation, remain to be understood in full. Electronic coherence within tightly-packed light-harvesting (LH) units or within individual reaction centers (RCs) has been recognized as an important ingredient for a complete understanding of the excitation energy transfer (EET) dynamics. However, the electronic coherence across units –RC and LH or LH and LH –has been consistently neglected as it does not play a significant role during these relatively slow transfer processes. Here, we turn our attention to the absorption process, which, as we will show, has a much shorter built-in timescale. We demonstrate that the- often overlooked- spatially extended but short-lived excitonic delocalization plays a relevant role in general photosynthetic systems. Most strikingly, we find that absorption intensity is, quite generally, redistributed from LH units to the RC, increasing the number of excitations which can effect charge separation without further transfer steps. A biomemetic nano-system is proposed which is predicted to funnel excitation to the RC-analogue, and hence is the first step towards exploiting these new design principles for efficient artificial light-harvesting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light absorption by aerosols has a great impact on climate change. A Photoacoustic spectrometer (PA) coupled with aerosol-based classification techniques represents an in situ method that can quantify the light absorption by aerosols in a real time, yet significant differences have been reported using this method versus filter based methods or the so-called difference method based upon light extinction and light scattering measurements. This dissertation focuses on developing calibration techniques for instruments used in measuring the light absorption cross section, including both particle diameter measurements by the differential mobility analyzer (DMA) and light absorption measurements by PA. Appropriate reference materials were explored for the calibration/validation of both measurements. The light absorption of carbonaceous aerosols was also investigated to provide fundamental understanding to the absorption mechanism. The first topic of interest in this dissertation is the development of calibration nanoparticles. In this study, bionanoparticles were confirmed to be a promising reference material for particle diameter as well as ion-mobility. Experimentally, bionanoparticles demonstrated outstanding homogeneity in mobility compared to currently used calibration particles. A numerical method was developed to calculate the true distribution and to explain the broadening of measured distribution. The high stability of bionanoparticles was also confirmed. For PA measurement, three aerosol with spherical or near spherical shapes were investigated as possible candidates for a reference standard: C60, copper and silver. Comparisons were made between experimental photoacoustic absorption data with Mie theory calculations. This resulted in the identification of C60 particles with a mobility diameter of 150 nm to 400 nm as an absorbing standard at wavelengths of 405 nm and 660 nm. Copper particles with a mobility diameter of 80 nm to 300 nm are also shown to be a promising reference candidate at wavelength of 405 nm. The second topic of this dissertation focuses on the investigation of light absorption by carbonaceous particles using PA. Optical absorption spectra of size and mass selected laboratory generated aerosols consisting of black carbon (BC), BC with non-absorbing coating (ammonium sulfate and sodium chloride) and BC with a weakly absorbing coating (brown carbon derived from humic acid) were measured across the visible to near-IR (500 nm to 840 nm). The manner in which BC mixed with each coating material was investigated. The absorption enhancement of BC was determined to be wavelength dependent. Optical absorption spectra were also taken for size and mass selected smoldering smoke produced from six types of commonly seen wood in a laboratory scale apparatus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional organic chemistry has long been dominated by ground state thermal reactions. The alternative to this is excited state chemistry, which uses light to drive chemical transformations. There is considerable interest in using this clean renewable energy source due to concerns surrounding the combustion byproducts associated with the consumption of fossil fuels. The work presented in this text will focus on the use of light (both ultraviolet and visible) for the following quantitative chemical transformations: (1) the release of compounds containing carboxylic acid and alcohol functional groups and (2) the conversion of carbon dioxide into other useable chemicals. Chapters 1-3 will introduce and explore the use of photoremovable protecting groups (PPGs) for the spatiotemporal control of molecular concentrations. Two new PPGs are discussed, the 2,2,2-tribromoethoxy group for the protection of carboxylic acids and the 9-phenyl-9-tritylone group for the protection of alcohols. Fundamental interest in the factors that affect C–X bond breaking has driven the work presented in this text for the release of carboxylic acid substrates. Product analysis from the UV photolysis of 2,2,2-tribromoethyl-(2′-phenylacetate) in various solvents results in the formation of H–atom abstraction products as well as the release of phenylacetic acid. The deprotection of alcohols is realized through the use of UV or visible light photolysis of 9-phenyl-9-tritylone ethers. Central to this study is the use of photoinduced electron transfer chemistry for the generation of ion diradicals capable of undergoing bond-breaking chemistry leading to the release of the alcohol substrates. Chapters 4 and 5 will explore the use of N-heterocyclic carbenes (NHCs) as a catalyst for the photochemical reduction of carbon dioxide. Previous experiments have demonstrated that NHCs can add to CO2 to form stable zwitterionic species known as N-heterocylic-2-carboxylates (NHC–CO2). Work presented in this text illustrate that the stability of these species is highly dependent on solvent polarity, consistent with a lengthening of the imidazolium to carbon dioxide bond (CNHC–CCO2). Furthermore, these adducts interact with excited state electron donors resulting in the generation of ion diradicals capable of converting carbon dioxide into formic acid.