11 resultados para Visible Light Absorption
em CaltechTHESIS
Resumo:
The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.
The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.
Resumo:
1. The effect of 2,2’-bis-[α-(trimethylammonium)methyl]azobenzene (2BQ), a photoisomerizable competitive antagonist, was studied at the nicotinic acetycholine receptor of Electrophorus electroplaques using voltage-jump and light-flash techniques.
2. 2BQ, at concentrations below 3 μΜ, reduced the amplitude of voltage-jump relaxations but had little effect on the voltage-jump relaxation time constants under all experimental conditions. At higher concentrations and voltages more negative than -150 mV, 2BQ caused significant open channel blockade.
3. Dose-ratio studies showed that the cis and trans isomers of 2BQ have equilibrium binding constants (K ᵢ) of .33 and 1.0 μΜ, respectively. The binding constants determined for both isomers are independent of temperature, voltage, agonist concentration, and the nature of the agonist.
4. In a solution of predominantly cis-2BQ, visible-light flashes led to a net cis→trans isomerization and caused an increase in the agonist-induced current. This increase had at least two exponential components; the larger amplitude component had the same time constant as a subsequent voltage-jump relaxation; the smaller amplitude component was investigated using ultraviolet light flashes.
5. In a solution of predominantly trans-2BQ, UV-light flashes led to a net trans→cis isomerization and caused a net decrease in the agonist-induced current. This effect had at least two exponential components. The smaller and faster component was an increase in agonist-induced current and had a similar time constant to the voltage-jump relaxation. The larger component was a slow decrease in the agonist-induced current with rate constant approximately an order of magnitude less than that of the voltage-jump relaxation. This slow component provided a measure of the rate constant for dissociation of cis-2BQ (k_ = 60/s at 20°C). Simple modelling of the slope of the dose-rate curves yields an association rate constant of 1.6 x 108/M/s. This agrees with the association rate constant of 1.8 x 108/M/s estimated from the binding constant (Ki). The Q10 of the dissociation rate constant of cis-2BQ was 3.3 between 6° and 20°C. The rate constants for association and dissociation of cis-28Q at receptors are independent of voltage, agonist concentration, and the nature of the agonist.
6. We have measured the molecular rate constants of a competitive antagonist which has roughly the same K ᵢ as d-tubocurarine but interacts more slowly with the receptor. This leads to the conclusion that curare itself has an association rate constant of 4 x 109/M/s or roughly as fast as possible for an encounter-limited reaction.
Resumo:
Multi-step electron tunneling, or “hopping,” has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.
The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan “wire.” The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.
Resumo:
Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics.
In the first part, I discuss the construction and performance of the world’s first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1′′. The full-width at half maximum achieved is 110–130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system.
In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6±1.8 kyr and 650±300 yr respectively. These ages are a factor of three to four times greater than their respective characteristic ages. The calculated braking index is close to unity as compared to three for the vacuum dipole model and 2.5-2.8 as measured for young pulsars. I conclude this section by describing a search for NIR counterparts of new magnetars and a future promise of polarimetric investigation of a magnetars’ NIR emission mechanism.
Resumo:
Nanostructured tungsten trioxide (WO3) photoelectrodes are potential candidates for the anodic portion of an integrated solar water-splitting device that generates hydrogen fuel and oxygen from water. These nanostructured materials can potentially offer improved performance in photooxidation reactions compared to unstructured materials because of enhancements in light scattering, increases in surface area, and their decoupling of the directions of light absorption and carrier collection. To evaluate the presence of these effects and their contributions toward energy conversion efficiency, a variety of nanostructured WO3 photoanodes were synthesized by electrodeposition within nanoporous templates and by anodization of tungsten foils. A robust fabrication process was developed for the creation of oriented WO3 nanorod arrays, which allows for control nanorod diameter and length. Films of nanostructured WO3 platelets were grown via anodization, the morphology of the films was controlled by the anodization conditions, and the current-voltage performance and spectral response properties of these films were studied. The observed photocurrents were consistent with the apparent morphologies of the nanostructured arrays. Measurements of electrochemically active surface area and other physical characteristics were correlated with observed differences in absorbance, external quantum yield, and photocurrent density for the anodized arrays. The capability to quantify these characteristics and relate them to photoanode performance metrics can allow for selection of appropriate structural parameters when designing photoanodes for solar energy conversion.
Resumo:
Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come.
Resumo:
The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.
The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.
The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.
Resumo:
With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.
Resumo:
This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.
The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.
The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.
Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.
Resumo:
I. PREAMBLE AND SCOPE
Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.
II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS
Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.
Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.
A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.
III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa
An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.
The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.
Resumo:
Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).
The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.
The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.
Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.
Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.
The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.