5 resultados para Stokes, Natalie,

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation concerns the well-posedness of the Navier-Stokes-Smoluchowski system. The system models a mixture of fluid and particles in the so-called bubbling regime. The compressible Navier-Stokes equations governing the evolution of the fluid are coupled to the Smoluchowski equation for the particle density at a continuum level. First, working on fixed domains, the existence of weak solutions is established using a three-level approximation scheme and based largely on the Lions-Feireisl theory of compressible fluids. The system is then posed over a moving domain. By utilizing a Brinkman-type penalization as well as penalization of the viscosity, the existence of weak solutions of the Navier-Stokes-Smoluchowski system is proved over moving domains. As a corollary the convergence of the Brinkman penalization is proved. Finally, a suitable relative entropy is defined. This relative entropy is used to establish a weak-strong uniqueness result for the Navier-Stokes-Smoluchowski system over moving domains, ensuring that strong solutions are unique in the class of weak solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gemstone Team FISH

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic diabetic ulcers affect approximately 15% of patients with diabetes worldwide. Currently, applied electric fields are being investigated as a reliable and cost-effective treatment. This in vitro study aimed to determine the effects of a constant and spatially variable electric field on three factors: endothelial cell migration, proliferation, and angiogenic gene expression. Results for a constant electric field of 0.01 V demonstrated that migration at short time points increased 20-fold and proliferation at long time points increased by a factor of 1.40. Results for a spatially variable electric field did not increase directional migration, but increased proliferation by a factor of 1.39 and by a factor of 1.55 after application of 1.00 V and 0.01 V, respectively. Both constant and spatially variable applied fields increased angiogenic gene expression. Future research that explores a narrower range of intensity levels may more clearly identify the optimal design specifications of a spatially variable electric field.