5 resultados para RANDOMIZED PHASE-III
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In the summers of 1998 and 1999, the Archaeology in Annapolis project carried out archaeological investigation at the eighteenth century Dr. Upton Scott House site (18AP18)located at 4 Shipwright Street in the historic district of Annapolis, Anne Arundel County, Maryland. The Upton Scott House is significant as one of only a few Georgian houses with remnants of its original plantation-inspired landscape still visible (Graham 1998:147). Investigation was completed in agreement with the owners of the historic property, Mr. and Mrs. Paul Christian, who were interested in determining the condition and arrangement of Dr. Upton Scott’s well-documented pleasure gardens. Betty Cosans’ 1972 Archaeological Feasibility Report, the first real archaeological study of the Upton Scott House site, guided the research design and recovery efforts. Cosans determined that testing and survey in the back and side yards of the Scott property would yield important information on the use and history of the property, including that of Scott’s famous gardens. Excavation units and trenches were placed within three separate areas of backyard activity on the site which included Area One: extant brick stables in the southwest of the property; Area Two: the brick foundations of a small outbuilding located in the northwest area of the site; and Area Three: the area of Scott’s formal gardens. The research design included an interest in recovering evidence of African-American spiritual practice and domestic life at the site. Also of significant importance was an analysis of Scott’s garden beds, concerning the order and layout. Also sought was an understanding of the change in perception and use of the backyard by the various owners of the property.
Resumo:
During the summer of 1994, Archaeology in Annapolis conducted archaeological investigations of the city block bounded by Franklin, South and Cathedral Streets in the city of Annapolis. This Phase III excavation was conducted as a means to identify subsurface cultural resources in the impact area associated with the proposed construction of the Anne Arundel County Courthouse addition. This impact area included both the upper and lower parking lots used by Courthouse employees. Investigations were conducted in the form of mechanical trenching and hand excavated units. Excavations in the upper lot area yielded significant information concerning the interior area of the block. Known as Bellis Court, this series of rowhouses was constructed in the late nineteenth century and was used as rental properties by African-Americans. The dwellings remained until the middle of the twentieth century when they were demolished in preparation for the construction of a Courthouse addition. Portions of the foundation of a house owned by William H. Bellis in the 1870s were also exposed in this area. Construction of this house was begun by William Nicholson around 1730 and completed by Daniel Dulany in 1732/33. It was demolished in 1896 by James Munroe, a Trustee for Bellis. Excavations in the upper lot also revealed the remains of a late seventeenth/early eighteenth century wood-lined cellar, believed to be part of the earliest known structure on Lot 58. After an initially rapid deposition of fill around 1828, this cellar was gradually covered with soil throughout the remainder of the nineteenth century. The fill deposit in the cellar feature yielded a mixed assemblage of artifacts that included sherds of early materials such as North Devon gravel-tempered earthenware, North Devon sgraffito and Northem Italian slipware, along with creamware, pearlware and whiteware. In the lower parking lot, numerous artifacts were recovered from yard scatter associated with the houses that at one time fronted along Cathedral Street and were occupied by African- Americans. An assemblage of late seventeenth century/early eighteenth century materials and several slag deposits from an early forge were recovered from this second area of study. The materials associated with the forge, including portions of a crucible, provided evidence of some of the earliest industry in Annapolis. Investigations in both the upper and lower parking lots added to the knowledge of the changing landscape within the project area, including a prevalence of open space in early periods, a surprising survival of impermanent structures, and a gradual regrading and filling of the block with houses and interior courts. Excavations at the Anne Arundel County Courthouse proved this to be a multi-component site, rich in cultural resources from Annapolis' Early Settlement Period through its Modern Period (as specified by Maryland's Comprehensive Historic Preservation Plan (Weissman 1986)). This report provides detailed interpretations of the archaeological findings of these Phase III investigations.
Resumo:
This report details the archaeology completed at Reynolds Tavern in the years 1982,1983, and 1984. It was completed in 2013, nearly 30 years after the excavation took place, using archival materials such as the draft interim reports, unit summary forms, original notes and photographs which are currently stored in the University Archives at Hornbake Library, at the University of Maryland, College Park. This report has been a collaboration across time and space, drawing from preliminary reports written by Anne Yenstch and Susan Mira in 1982 and Joe Dent and Beth Ford in 1983, as well as original notes from students of the field schools held there during those years, various analyses by scholars from many universities (including the University of Maryland, University of Georgia, and the College of William and Mary), and historical research by Nancy Baker. Thomas Cuddy began the writing of this report in 2002, completing the first three chapters in addition to the artifact analysis that led to the postexcavation identification of the African bundles in the Reynolds Tavern basement. This remarkable discovery was made along with Mark Leone of the University of Maryland, founder and director of Archaeology in Annapolis, who also served as the Principle Investigator during all three years of the Reynolds Tavern excavations. Dr. Leone contributed the fifth and final chapter to this report, the Conclusions and Recommendations, during its final compilation in 2013. The final report, including the fourth chapter on the archaeology itself, was written in part and compiled by Patricia Markert of the University of Maryland in the spring of 2013. Reynolds Tavern has been part of the landscape of Annapolis for two-hundred and fifty five years (at the time of the publication of this report). It sits on Church Circle facing St. Anne’s Church, and is a beautiful example of 18th century Georgian architecture as well one of the defining features of Historic Annapolis today. It currently operates as a popular restaurant and pub, but has served variously as a hat shop, a tavern, an inn, a library and a bank over time, among other things. Its long history contributes to its significance as an archaeological site, and also as a historic marker in present day Annapolis. The archaeology conducted at Reynolds Tavern shed light on life in 18th and 19th century Annapolis, illuminating details of the occupants’ lives through the material traces they left behind. These include an 18th century cobblestone road that ran diagonally through the Tavern’s yard, telling of the movement through early Annapolis; a large and intact well, which was found ii to contain a 19 foot wooden pipe; a large, ovular privy containing many of the objects used on a day to day basis at the Tavern or the structures around it; a subterranean brick storage feature in the basement of the Tavern, which may have been used by Reynolds during his days operating a hat shop; and also in the basement, two African caches of objects, providing a glimpse into West African spiritual practices alive in historic Annapolis and the presence of African American individuals at the Tavern in the 18th and 19th centuries. The purpose of this report is to detail these archaeological investigations and their findings, so that a public record will be available and the archaeology completed at Reynolds Tavern can continue to contribute to the history of Annapolis.
Resumo:
Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method.
Resumo:
Peer-to-peer information sharing has fundamentally changed customer decision-making process. Recent developments in information technologies have enabled digital sharing platforms to influence various granular aspects of the information sharing process. Despite the growing importance of digital information sharing, little research has examined the optimal design choices for a platform seeking to maximize returns from information sharing. My dissertation seeks to fill this gap. Specifically, I study novel interventions that can be implemented by the platform at different stages of the information sharing. In collaboration with a leading for-profit platform and a non-profit platform, I conduct three large-scale field experiments to causally identify the impact of these interventions on customers’ sharing behaviors as well as the sharing outcomes. The first essay examines whether and how a firm can enhance social contagion by simply varying the message shared by customers with their friends. Using a large randomized field experiment, I find that i) adding only information about the sender’s purchase status increases the likelihood of recipients’ purchase; ii) adding only information about referral reward increases recipients’ follow-up referrals; and iii) adding information about both the sender’s purchase as well as the referral rewards increases neither the likelihood of purchase nor follow-up referrals. I then discuss the underlying mechanisms. The second essay studies whether and how a firm can design unconditional incentive to engage customers who already reveal willingness to share. I conduct a field experiment to examine the impact of incentive design on sender’s purchase as well as further referral behavior. I find evidence that incentive structure has a significant, but interestingly opposing, impact on both outcomes. The results also provide insights about senders’ motives in sharing. The third essay examines whether and how a non-profit platform can use mobile messaging to leverage recipients’ social ties to encourage blood donation. I design a large field experiment to causally identify the impact of different types of information and incentives on donor’s self-donation and group donation behavior. My results show that non-profits can stimulate group effect and increase blood donation, but only with group reward. Such group reward works by motivating a different donor population. In summary, the findings from the three studies will offer valuable insights for platforms and social enterprises on how to engineer digital platforms to create social contagion. The rich data from randomized experiments and complementary sources (archive and survey) also allows me to test the underlying mechanism at work. In this way, my dissertation provides both managerial implication and theoretical contribution to the phenomenon of peer-to-peer information sharing.