4 resultados para RANDOMIZED PHASE-III
em CaltechTHESIS
Resumo:
Spontaneous emission into the lasing mode fundamentally limits laser linewidths. Reducing cavity losses provides two benefits to linewidth: (1) fewer excited carriers are needed to reach threshold, resulting in less phase-corrupting spontaneous emission into the laser mode, and (2) more photons are stored in the laser cavity, such that each individual spontaneous emission event disturbs the phase of the field less. Strong optical absorption in III-V materials causes high losses, preventing currently-available semiconductor lasers from achieving ultra-narrow linewidths. This absorption is a natural consequence of the compromise between efficient electrical and efficient optical performance in a semiconductor laser. Some of the III-V layers must be heavily doped in order to funnel excited carriers into the active region, which has the side effect of making the material strongly absorbing.
This thesis presents a new technique, called modal engineering, to remove modal energy from the lossy region and store it in an adjacent low-loss material, thereby reducing overall optical absorption. A quantum mechanical analysis of modal engineering shows that modal gain and spontaneous emission rate into the laser mode are both proportional to the normalized intensity of that mode at the active region. If optical absorption near the active region dominates the total losses of the laser cavity, shifting modal energy from the lossy region to the low-loss region will reduce modal gain, total loss, and the spontaneous emission rate into the mode by the same factor, so that linewidth decreases while the threshold inversion remains constant. The total spontaneous emission rate into all other modes is unchanged.
Modal engineering is demonstrated using the Si/III-V platform, in which light is generated in the III-V material and stored in the low-loss silicon material. The silicon is patterned as a high-Q resonator to minimize all sources of loss. Fabricated lasers employing modal engineering to concentrate light in silicon demonstrate linewidths at least 5 times smaller than lasers without modal engineering at the same pump level above threshold, while maintaining the same thresholds.
Resumo:
The relentlessly increasing demand for network bandwidth, driven primarily by Internet-based services such as mobile computing, cloud storage and video-on-demand, calls for more efficient utilization of the available communication spectrum, as that afforded by the resurging DSP-powered coherent optical communications. Encoding information in the phase of the optical carrier, using multilevel phase modulationformats, and employing coherent detection at the receiver allows for enhanced spectral efficiency and thus enables increased network capacity. The distributed feedback semiconductor laser (DFB) has served as the near exclusive light source powering the fiber optic, long-haul network for over 30 years. The transition to coherent communication systems is pushing the DFB laser to the limits of its abilities. This is due to its limited temporal coherence that directly translates into the number of different phases that can be imparted to a single optical pulse and thus to the data capacity. Temporal coherence, most commonly quantified in the spectral linewidth Δν, is limited by phase noise, result of quantum-mandated spontaneous emission of photons due to random recombination of carriers in the active region of the laser.
In this work we develop a generically new type of semiconductor laser with the requisite coherence properties. We demonstrate electrically driven lasers characterized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow linewidth is result of a fundamentally new laser design philosophy that separates the functions of photon generation and storage and is enabled by a hybrid Si/III-V integration platform. Photons generated in the active region of the III-V material are readily stored away in the low loss Si that hosts the bulk of the laser field, thereby enabling high-Q photon storage. The storage of a large number of coherent quanta acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous emission-mandated phase perturbations on the laser field, while the enhanced photon lifetime effectively reduces the emission rate of incoherent quanta into the lasing mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the entire optical communication C-band (1530-1575nm) at only a fraction of the input power required by conventional DFB lasers. The results presented in this thesis hold great promise for the large scale integration of lithographically tuned, high-coherence laser arrays for use in coherent communications, that will enable Tb/s-scale data capacities.
Resumo:
This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.
Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.
Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.
The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.
In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.