3 resultados para HOA microphone
em DRUM (Digital Repository at the University of Maryland)
Resumo:
While humans can easily segregate and track a speaker's voice in a loud noisy environment, most modern speech recognition systems still perform poorly in loud background noise. The computational principles behind auditory source segregation in humans is not yet fully understood. In this dissertation, we develop a computational model for source segregation inspired by auditory processing in the brain. To support the key principles behind the computational model, we conduct a series of electro-encephalography experiments using both simple tone-based stimuli and more natural speech stimulus. Most source segregation algorithms utilize some form of prior information about the target speaker or use more than one simultaneous recording of the noisy speech mixtures. Other methods develop models on the noise characteristics. Source segregation of simultaneous speech mixtures with a single microphone recording and no knowledge of the target speaker is still a challenge. Using the principle of temporal coherence, we develop a novel computational model that exploits the difference in the temporal evolution of features that belong to different sources to perform unsupervised monaural source segregation. While using no prior information about the target speaker, this method can gracefully incorporate knowledge about the target speaker to further enhance the segregation.Through a series of EEG experiments we collect neurological evidence to support the principle behind the model. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of the remarkable perceptual ability of humans to segregate acoustic sources, and of its psychophysical manifestations in navigating complex sensory environments. Results from EEG experiments provide further insights into the assumptions behind the model and provide motivation for future single unit studies that can provide more direct evidence for the principle of temporal coherence.
Resumo:
This dissertation focuses on design challenges caused by secondary impacts to printed wiring assemblies (PWAs) within hand-held electronics due to accidental drop or impact loading. The continuing increase of functionality, miniaturization and affordability has resulted in a decrease in the size and weight of handheld electronic products. As a result, PWAs have become thinner and the clearances between surrounding structures have decreased. The resulting increase in flexibility of the PWAs in combination with the reduced clearances requires new design rules to minimize and survive possible internal collisions impacts between PWAs and surrounding structures. Such collisions are being termed ‘secondary impact’ in this study. The effect of secondary impact on board-level drop reliability of printed wiring boards (PWBs) assembled with MEMS microphone components, is investigated using a combination of testing, response and stress analysis, and damage modeling. The response analysis is conducted using a combination of numerical finite element modeling and simplified analytic models for additional parametric sensitivity studies.
Resumo:
A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.