2 resultados para coexistence
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
We present a lattice model to study the equilibrium phase diagram of ordered alloys with one magnetic component that exhibits a low temperature phase separation between paramagnetic and ferromagnetic phases. The model is constructed from the experimental facts observed in Cu3-xAlMnx and it includes coupling between configurational and magnetic degrees of freedom that are appropriate for reproducing the low temperature miscibility gap. The essential ingredient for the occurrence of such a coexistence region is the development of ferromagnetic order induced by the long-range atomic order of the magnetic component. A comparative study of both mean-field and Monte Carlo solutions is presented. Moreover, the model may enable the study of the structure of ferromagnetic domains embedded in the nonmagnetic matrix. This is relevant in relation to phenomena such as magnetoresistance and paramagnetism
Resumo:
Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.