2 resultados para MASSES
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
The structural and electronic properties of Cu2O have been investigated using the periodic Hartree-Fock method and a posteriori density-functional corrections. The lattice parameter, bulk modulus, and elastic constants have been calculated. The electronic structure of and bonding in Cu2O are analyzed and compared with x-ray photoelectron spectroscopy spectra, showing a good agreement for the valence-band states. To check the quality of the calculated electron density, static structure factors and Compton profiles have been calculated, showing a good agreement with the available experimental data. The effective electron and hole masses have been evaluated for Cu2O at the center of the Brillouin zone. The calculated interaction energy between the two interpenetrated frameworks in the cuprite structure is estimated to be around -6.0 kcal/mol per Cu2O formula. The bonding between the two independent frameworks has been analyzed using a bimolecular model and the results indicate an important role of d10-d10 type interactions between copper atoms.
Resumo:
We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the presence of nonbaryonic "quark" matter in the interior of heavy stars.