2 resultados para DIRECT ELECTRON-TRANSFER
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated
Resumo:
We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the outer cell parameters, from which physically useful values can be obtained.