3 resultados para experimental models
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Blast traumatic brain injury (BTBI) has become an important topic of study because of the increase of such incidents, especially due to the recent growth of improvised explosive devices (IEDs). This thesis discusses a project in which laboratory testing of BTBI was made possible by performing blast loading on experimental models simulating the human head. Three versions of experimental models were prepared – one having a simple geometry and the other two having geometry similar to a human head. For developing the head models, three important parts of the head were considered for material modeling and analysis – the skin, skull and brain. The materials simulating skin, skull and brain went through many testing procedures including dynamic mechanical analysis (DMA). For finding a suitable brain simulant, several materials were tested under low and high frequencies. Step response analysis, rheometry and DMA tests were performed on materials such as water based gels, oil based mixtures and silicone gels cured at different temperatures. The gelatins and silicone gels showed promising results toward their use as brain surrogate materials. Temperature degradation tests were performed on gelatins, indicating the fast degradation of gelatins at room temperature. Silicone gels were much more stable compared to the water based gels. Silicone gels were further processed using a thinner-type additive gel to bring the dynamic modulus values closer to those of human brain matter. The obtained values from DMA were compared to the values for human brain as found in literature. Then a silicone rubber brain mold was prepared to give the brain model accurate geometry. All the components were put together to make the entire head model. A steel mount was prepared to attach the head for testing at the end of the shock tube. Instrumentation was implemented in the head model to obtain effective results for understanding more about the possible mechanisms of BTBI. The final head model was named the Realistic Explosive Dummy Head or the “RED Head.” The RED Head offered potential for realistic experimental testing in blast loading conditions by virtue of its material properties and geometrical accuracy.
Resumo:
Static analysis tools report software defects that may or may not be detected by other verification methods. Two challenges complicating the adoption of these tools are spurious false positive warnings and legitimate warnings that are not acted on. This paper reports automated support to help address these challenges using logistic regression models that predict the foregoing types of warnings from signals in the warnings and implicated code. Because examining many potential signaling factors in large software development settings can be expensive, we use a screening methodology to quickly discard factors with low predictive power and cost-effectively build predictive models. Our empirical evaluation indicates that these models can achieve high accuracy in predicting accurate and actionable static analysis warnings, and suggests that the models are competitive with alternative models built without screening.
Resumo:
Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.