2 resultados para Natural resonance theory

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The passage of the Native American Graves Protection and Repatriation Act (NAGPRA) in 1991 significantly changed the way archaeology would be done in the United States. This act was presaged by growing complaints and resentment directed at the scientific community by Native Americans over the treatment of their ancestral remains. Many of the underlying issues came to a head with the discovery and subsequent court battles over the 9,200-year-old individual commonly known as Kennewick Man. This had a galvanizing effect on the discipline, not only perpetuating the sometimes adversarial relationship between archaeologists and Native Americans, but also creating a rift between those archaeologists who understood Native American concerns and those who saw their ancestral skeletal remains representing the legacy of humankind and thus belonging to everyone. Similar scenarios have emerged in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.