2 resultados para NUCLEAR DATA COLLECTIONS
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Addition of three species to the list is recommended based on recent literature. (Orcaella brevirostris) has been split into the Irrawaddy dolphin (O. brevirostris) and the Australian snubfin dolphin (O. heinsohni). Sotalia fluviatilis has been split into the riverine tucuxi (S. fluviatilis) and the marine "costero" (S. guianensis). Evidence to support both of these splits is convincing, and we recommend that they be recognized in the list. The existence of the Bryde's-whale-like species described in 2003 as Balaenoptera omurai has been confirmed with additional genetic (nuclear) data. While the species clearly exists, the nomenclature is still unsettled because the genetic identity of the holotype specimen of Balaenoptera edeni has not yet been determined. However, the name B. omurai is gaining wide usage in application to the new species, and we propose that it be used provisionally by the Scientific Committee pending the genetic identification of the B. edeni holotype. We recommend that India be urged to facilitate the identification. We recommend continued use of the name Balaenoptera edeni provisionally for both the "ordinary" large form and the small coastal form, recognizing that further genetic and morphological research may justify recognition of two species: B. brydei and B. edeni. We also recommend that any new specimen be referred to B. omurai only after its mtDNA has been sequenced and found to support the identification.
Resumo:
Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.