4 resultados para Mana-Maní
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Optical networks based on passive-star couplers and employing WDM have been proposed for deployment in local and metropolitan areas. These networks suffer from splitting, coupling, and attenuation losses. Since there is an upper bound on transmitter power and a lower bound on receiver sensitivity, optical amplifiers are usually required to compensate for the power losses mentioned above. Due to the high cost of amplifiers, it is desirable to minimize their total number in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus, optical amplifier placement becomes a challenging problem. In fact, the general problem of minimizing the total amplifier count is a mixed-integer nonlinear problem. Previous studies have attacked the amplifier-placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. This constraint simplifies the problem into a solvable mixed integer linear program. Unfortunately, this artificial constraint can miss feasible solutions that have a lower amplifier count but do not have the equally powered wavelengths constraint. In this paper, we present a method to solve the minimum amplifier- placement problem, while avoiding the equally powered wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required.
Resumo:
Optical networks based on passive star couplers and employing wavelength-division multiplexing (WDhf) have been proposed for deployment in local and metropolitan areas. Amplifiers are required in such networks to compensate for the power losses due to splitting and attenuation. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus optical amplifier placement becomes a challenging problem. The general problem of minimizing the total amplifier count, subject to the device constraints, is a mixed-integer non-linear problem. Previous studies have attacked the amplifier placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. In this paper, we present a method to solve the minimum amplifier- placement problem while avoiding the equally powered- wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required in several small to medium-sized networks.
Resumo:
1. Hydatid cysts are found in more than 30 per cent of all cattle, sheep and goats in Kenya, but the disease is prevalent in man only in the semi-desert area of Turkana. Up to the time of the present investigation the life-cycle of the parasite in East Africa had not been studied, but it was suggested that wild carnivores, such as hyenas and jackals, might be the main hosts of the adult worms. 2. One hundred and forty-three carnivores, representing 23 species, have been examined. Echinococcus adults were found in 27 out of 43 domestic dogs (Canis familiaris), in three out of four hunting dogs (Lycaon pictus), in one out of nine jackals (Thos mesomelas), and in three out of 19 hyaenas (Crocuta crocuta). 3. A detailed morphological study was made of the Kenya material. After comparison with specimens from other parts of the world, it was concluded that the only species occurring in Kenya was E. granulosus, but it is possible that the minor morphological and biological differences are evidence of distinct strains. Further laboratory studies are necessary to compare the parasite from man and animals in different parts of Kenya with material from elsewhere. 4. A search was made for larval hydatids in 92 ungulates representing 18 species, and in a miscellaneous collection of nearly 2,000 rodents and primates representing a further 31 species. Only one animal was positive, a wildebeest (Gorgon taurinus). 5. The infections in the wild carnivores were all very light; only domestic dogs were heavily infected. It is concluded that the main cycle of transmission in Kenya is between dogs and domestic livestock. 6. Turkana tribesmen are the most heavily infected people in Kenya, either because the strain of parasite is more pathogenic to man in that area, or, more probably, because of the intimate contact between children and the large number of infected dogs. A particularly dangerous custom in the area is the use of dogs to clean the face and anal regions of babies when they vomit or have diarrhea. No satisfactory explanation can be given for the rarity of the disease in man in many of the other areas of Kenya where hydatids are very common in domestic animals. 7. The control of the disease will depend upon an active health-education campaign, together with the destruction of all unregistered dogs and improvement in meat hygiene.
Resumo:
“Specifically, issues of race, gender, disability, status, etc. provide a new context in which to judge the reasonableness of an individual’s actions.”