4 resultados para TRANSCRIPTIONAL REPRESSOR BLIMP-1

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor Ets-1 is implicated in various physiological processes and invasive pathologies. We identified a novel variant of ets-1, ets-1Delta(III-VI), resulting from the alternative splicing of exons III to VI. This variant encodes a 27 kDa isoform, named Ets-1 p27. Ets-1 p27 lacks the threonine-38 residue, the Pointed domain and the transactivation domain, all of which are required for the transactivation of Ets-1 target genes. Both inhibitory domains surrounding the DNA-binding domain are conserved, suggesting that Ets-1 p27, like the full-length Ets-1 p51 isoform, is autoinhibited for DNA binding. We showed that Ets-1 p27 binds DNA in the same way as Ets-1 p51 does and that it acts both at a transcriptional and a subcellular localization level, thereby constituting a dual-acting dominant negative of Ets-1 p51. Ets-1 p27 blocks Ets-1 p51-mediated transactivation of target genes and induces the translocation of Ets-1 p51 from the nucleus to the cytoplasm. Furthermore, Ets-1 p27 overexpression represses the tumor properties of MDA-MB-231 mammary carcinoma cells in correlation with the known implication of Ets-1 in various cellular mechanisms. Thus the dual-acting dominant-negative function of Ets-1 p27 gives to the Ets-1 p27/Ets-1 p51 ratio a determining effect on cell fate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E2F6 protein belongs to the family of the E2F transcription factors. Here, we showed that the human E2F6 gene contains nine exons distributed along 20.4kbp of genomic DNA on chromosome 2 leading to the transcription of six alternatively spliced E2F6 mRNAs that encode four different E2F6 proteins. Moreover, we identified an E2F6 pseudogene localized on chromosome 22 completely spliced and devoid of exons 2, 3, and 4, and part of exons 1 and 5. Definition of the transcriptional initiation site and sequence analysis show that the gene contains a TATA less, CAAT less, GC-rich promoter with multiple transcription start sites. Regulatory elements necessary for basal transcription reside within a 134bp fragment as determined by transient transfection experiments. © 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PEA3 group is composed of three highly conserved Ets transcription factors: Erm, Er81, and Pea3. These proteins regulate transcription of multiple genes, and their transactivating potential is affected by post-translational modifications. Among their target genes are several matrix metalloproteases (MMPs), which are enzymes degrading the extracellular matrix during normal remodelling events and cancer metastasis. In fact, PEA3-group genes are often over-expressed in different types of cancers that also over-express these MMPs and display a disseminating phenotype. Experimental regulation of the synthesis of PEA3 group members influences the metastatic process. This suggests that these factors play a key role in metastasis. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.