3 resultados para Protozoa, Pathogenic.
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
As the study of interactions between pathogenic microorganisms and their environment is part of microbial ecology, this chapter reviews the different types of human pathogens found in the environment, the different types of fecal indicators used in water quality monitoring, the biotic and abiotic factors affecting the survival and the infectivity of pathogenic microorganisms during their transportation in the environment, and the methods presently available to detect rare microorganisms in environmental samples. This chapter exclusively focuses on human pathogens.
Resumo:
E-cadherin is involved in the formation of cell-junctions and the maintenance of epithelial integrity. Direct evidence of E-cadherin mutations triggering tumorigenesis has come from the finding of inactivating germline mutations of the gene (CDH1) in hereditary diffuse gastric cancer (HDGC). We screened a series of 66 young gastric cancer probands for germline CDH1 mutations, and two novel missense alterations together with an intronic variant were identified. We then analysed the functional significance of the exonic missense variants found here as well as a third germline missense variant that we previously identified in a HGDC family. cDNAs encoding either the wild-type protein or mutant forms of E-cadherin were stably transfected into CHO (Chinese hamster ovary) E-cadherin-negative cells. Transfected cell-lines were characterized in terms of aggregation, motility and invasion. We show that a proportion of apparently sporadic early-onset diffuse gastric carcinomas are associated with germline alterations of the E-cadherin gene. We also demonstrate that a proportion of missense variants are associated with significant functional consequences, suggesting that our cell model can be used as an adjunct in deciding on the potential pathogenic role of identified E-cadherin germline alterations.
Resumo:
Studies [Zhou, D. Chen, L.-M. Hernandez, L. Shears, S.B. and Galán, J.E. (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host-cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248-259] with engineered Salmonella mutants showed that deletion of SopE attenuated the pathogen's ability to deplete host-cell InsP5 and remodel the cytoskeleton. We pursued these observations: In SopE-transfected host-cells, membrane ruffling was induced, but SopE did not dephosphorylate InsP5, nor did it recruit PTEN (a cytosolic InsP5 phosphatase) for this task. However, PTEN strengthened SopE-mediated membrane ruffling. We conclude SopE promotes host-cell InsP5 hydrolysis only with the assistance of other Salmonella proteins. Our demonstration that Salmonella-mediated cytoskeletal modifications are independent of inositolphosphates will focus future studies on elucidating alternate pathogenic consequences of InsP5 metabolism, including ion channel conductance and apoptosis.