3 resultados para Order of the Brothers of the Sword.

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of biadipate on Au(111) was studied by cyclic voltammetry and chronocoulometry. The biadipate adlayer undergoes a potential-driven phase transition. It is shown that the phase transition can be either of the first- or second-order depending on the biadipate concentration. At low surfactant concentrations, the first-order transition is characterised by a discontinuity in the charge density-potential curve and by the presence of very sharp peaks in the voltammetric response. At higher concentrations, these peaks are no longer observed but a discontinuity in the capacity curve is still noticeable, in agreement with a second-order transition. © the Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bifunctional Ru(II) complex [Ru(BPY)2POQ-Nmet]2+ (1), in which the metallic unit is tethered by an aliphatic chain to an organic DNA binder, was designed in order to increase the affinity toward nucleic acids. The interaction of 1 with DNA was characterised from luminescence and absorption data and compared with the binding of its monofunctional metallic and organic analogues, [Ru(BPY)2(ac)phen]2+ (2) and Nmet-quinoline (3). The bifunctional complex has a binding affinity one order of magnitude higher than that of each of its separated moieties. Absorption changes induced upon addition of DNA at different pH indicate protonation of the organic sub-unit upon interaction with DNA under neutral conditions. The combination of the luminescence data under steady-state and time-resolved conditions shows that the attachment of the organic unit in 1 induces modifications of the association modes of the metallic unit, owing to the presence of the aliphatic chain which probably hinders the metallic moiety binding. The salt dependence of the binding constants was analysed in order to compare the thermodynamic parameters describing the association with DNA for each complex. This study demonstrates the interest of the derivatisation of a Ru(II) complex with an organic moiety (ia the bifunctional ligand POQ-Nmet) for the development of high affinity DNA probes or photoreactive agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.